ABSTRACT
Choroidal neovascularization due to age-related macular degeneration (AMD) is currently treated successfully with anti-vascular endothelial growth factor (VEGF) intravitreal agents. Emerging evidence suggests that anti-VEGF treatment may potentially increase development of geographic atrophy. However, there is not yet direct proof of a causal relationship between geographic atrophy and use of anti-VEGF agents in neovaskuler AMD. The aim of this review is to discuss the evidence concerning the association between anti-VEGF therapy and progression of geographic atrophy.
Keywords:
Anti-VEGF agents, geographic atrophy, age-related macular degeneration
Introduction
Intravitreal anti-vascular endothelial growth factor (VEGF) application has been the most effective treatment method in recent years for neovascular age-related macular degeneration (AMD).1,2,3 The common feature of the multicenter studies conducted in this area with different agents and for different purposes is that they first determined the efficacy and safety of these agents. In the MARINA and ANCHOR trials, monthly ranibizumab injections preserved visual acuity and maintained vision level, and this finding has been clearly demonstrated in evidence-based, controlled comparative studies.1,2 Two main points have recently been raised regarding the safety of anti-VEGFs. The first concern is local side effects such as endophthalmitis, vitreal hemorrhage, or retinal detachment, and the second is systemic side effects, especially cerebrovascular events. However, studies of these extremely rare adverse events showed that the use of these agents was not significantly associated with the likelihood of developing such complications.1,2,3,4,5
Retrospective analyses of multicenter studies have provided new and interesting findings. One example is evidence from the CATT3 trial which suggests a relationship between long-term anti-VEGF therapy and the development of geographic atrophy. The IVAN4 and HARBOR6 trials were also retrospectively analyzed in terms of this possible relationship and reported suspicious findings similar to those found in the CATT trial.3,4,5,6,7,8
Therefore, one of the most important questions of recent times is whether late geographic atrophy is really more prevalent in patients with long-term anti-VEGF use, and if so, what role the anti-VEGF agents play in the development of geographic atrophy.
Conclusion
In conclusion, retrospective analyses of the CATT15,16, IVAN4, and HARBOR6 trials suggest that long-term intravitreal anti-VEGF therapies increase geographic atrophy in wet AMD patients. Even if this is the case, however, considering that 80% of these atrophic changes are extrafoveal and do not directly affect visual acuity, wet AMD patients should nevertheless be treated with adequate duration and frequency despite this possibility. As observed in the MARINA1 and ANCHOR2 trials, treatment yields visual gains of over 20 letters, compared to the loss of 14 letters in the sham group, which reflects the natural disease course. Even if atrophy does develop, the difference in letters gained between the patients with and without atrophy is 2.4 letters at 24 months. In light of these findings, it remains to be clarified whether the areas of geographic atrophy seen after anti-VEGF therapy in wet AMD are associated with the natural course of the disease or emerge as a result of the anti-VEGF molecules used in treatment. Regardless, considering the approximately 20-letter gain achieved over a 2-year period in these patients compared to the natural course, we believe these therapies are still indispensable for the treatment of wet AMD.
References
1Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, Kim RY MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355:1419–1431. [
PubMed] [
Google Scholar]
2Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T; ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR Study. Ophthalmology. 2009;116:57–65. [
PubMed] [
Google Scholar]
3Martin DF, Maguire MG, Ying GS, Grunwald JE, Fine SL, Jaffe GJ; CATT Research Group. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 2011;364:1897–1908. [
PMC free article] [
PubMed] [
Google Scholar]
4Chakravarthy U, Harding SP, Rogers CA, Downes SM, Lotery AJ, Culliford LA, Reeves BC; IVAN study investigators. Alternative treatments to inhibit VEGF in age-related choroidal neovascularisation: 2-year findings of the IVAN randomized controlled trial. Lancet. 2013;382:1258–1267. [
PubMed] [
Google Scholar]
5Wells JA, Glassman AR, Ayala AR, Jampol LM, Aiello LP, Antoszyk AN, Arnold-Bush B, Baker CW, Bressler NM, Browning DJ, Elman MJ, Ferris FL, Friedman SM, Melia M, Pieramici DJ, Sun JK, Beck RW; Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 2015;372:1193–1203. [
PMC free article] [
PubMed] [
Google Scholar]
6Sarraf D, London NJ, Khurana RN, Dugel PU, Gune S, Hill L, Tuomi L. Ranibizumab Treatment for Pigment Epithelial Detachment Secondary to Neovascular Age-Related Macular Degeneration: Post Hoc Analysis of the HARBOR Study. Ophthalmology. 2016;123:2213–2224. [
PubMed] [
Google Scholar]
7Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL 3rd; Age-Related Eye Disease Study Research Group. Risk factors for the incidence of advanced age-related macular degeneration in the Age-Related Eye Disease Study (AREDS): AREDS report no. 19. Ophthalmology. 2005;112:533–539. [
PMC free article] [
PubMed] [
Google Scholar]
8Complications of Age-related Macular Degeneration Prevention Trial (CAPT) Research Group. Risk factors for choroidal neovascularization and geographic atrophy in the Complications of Age-related Macular Degeneration Prevention Trial. Ophthalmology. 2008;115:1474–1479. [
PubMed] [
Google Scholar]
9Gemenetzi M, Lotery AJ, Patel PJ. Risk of geographic atrophy in age-related macular degeneration patients treated with intravitreal anti-VEGF agents. Eye (Lond). 2017;31:1–9. [
PMC free article] [
PubMed] [
Google Scholar]
10Barreau E, Brossas JY, Courtois Y, Tréton JA. Accumulation of mitochondrial DNA deletions in human retina during aging. Invest Ophthalmol Vis Sci. 1996;37:384–391. [
PubMed] [
Google Scholar]
11Chen H, Lukas TJ, Du N, Suyeoka G, Neufeld AH. Dysfunction of the retinal pigment epithelium with age: increased iron decreases phagocytosis and lysosomal activity. Invest Ophthalmol Vis Sci. 2009;50:1895–1902. [
PubMed] [
Google Scholar]
12Ach T, Tolstik E, Messinger JD, Zarubina AV, Heintzmann R, Curcio CA. Lipofuscin redistribution and loss accompanied by cytoskeletal stress in retinal pigment epithelium of eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2015;56:3242–3252. [
PMC free article] [
PubMed] [
Google Scholar]
13Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol. 1999;44:1–29. [
PubMed] [
Google Scholar]
14Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D’Amore PA. An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci U S A. 2009;106:18751–18756. [
PMC free article] [
PubMed] [
Google Scholar]
15Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA, Jaffe GJ, Fine SL, Blodi B, Klein ML, Martin AA, Hagstrom SA, Martin DF CATT Research Group. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121:150–61. [
PMC free article] [
PubMed] [
Google Scholar]
16Grunwald JE, Pistilli M, Daniel E, Ying GS, Pan W, Jaffe GJ, Toth CA, Hagstrom SA, Maguire MG, Martin DF Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Incidence and Growth of Geographic Atrophy during 5 Years of Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2017;124:97–104. [
PMC free article] [
PubMed] [
Google Scholar]