Congenital Cataract and Its Genetics: The Era of Next-Generation Sequencing
PDF
Cite
Share
Request
Review
VOLUME: 51 ISSUE: 2
P: 107 - 113
April 2021

Congenital Cataract and Its Genetics: The Era of Next-Generation Sequencing

Turk J Ophthalmol 2021;51(2):107-113
1. Hacettepe University Faculty of Medicine, Department of Ophthalmology, Ankara, Turkey
2. Hacettepe University Faculty of Medicine, Department of Pediatrics, Department of Pediatric Genetics, Ankara, Turkey
No information available.
No information available
Received Date: 13.05.2020
Accepted Date: 27.08.2020
Publish Date: 29.04.2021
PDF
Cite
Share
Request

ABSTRACT

Congenital cataract is a challenging ophthalmological disorder which can cause severe visual loss. It can be diagnosed at birth or during the first year of life. Early diagnosis and treatment are crucial for the visual prognosis. It can be associated with various ocular and systemic abnormalities. Determining whether congenital cataract is isolated or associated with other pathology is an indispensable step for the prediction of potential vision as well as early diagnosis and treatment of conditions that can cause morbidity or mortality. Many genes have been identified in the molecular etiology of congenital cataract. Most mutations have been reported in the crystallin genes. Determination of the genetic cause may not only enable individualized genetic counseling but also help to identify concomitant ocular and/or systemic disorders depending on the characteristics of the genetic test used. Recently, next-generation sequencing in particular has become an evolving technology for determining the molecular etiology of congenital cataract and furthering our knowledge of the disease.

Keywords:
Genetics, congenital cataract, crystallin, lens, next-generation sequencing

Introduction

Congenital cataract is lens opacity that presents at birth or early in the postnatal period. It may be unilateral or bilateral. Because it occurs during early vision development, it causes serious vision loss and, more importantly, severe amblyopia. Follow-up and treatment are long-term and important, and an etiology cannot be identified for a substantial proportion of patients.1 For this reason, one of the main objectives of the Vision 2020: Right to Sight, a global initiative to eliminate preventable blindness worldwide, was to prevent causes of childhood blindness, including congenital cataract.2

References

1
Lambert SR, Drack AV. Infantile cataracts. Surv Ophthalmol. 1996;40:427-458.
2
Thylefors B. A global initiative for the elimination of avoidable blindness. Community Eye Health. 1998;11:1-3.
3
Wu X, Long E, Lin H, Liu Y. Prevalence and epidemiological characteristics of congenital cataract: a systematic review and meta-analysis. Sci Rep. 2016;6:28564.
4
Sheeladevi S, Lawrenson JG, Fielder AR, Suttle CM. Global prevalence of childhood cataract: a systematic review. Eye (Lond). 2016;30:1160-1169.
5
Lin H, Lin D, Liu Z, Long E, Wu X, Cao Q, Chen J, Lin Z, Li X, Zhang L, Chen H, Zhang X, Li J, Chen W, Liu Y. A Novel Congenital Cataract Category System Based on Lens Opacity Locations and Relevant Anterior Segment Characteristics. Invest Ophthalmol Vis Sci. 2016;57:6389-6395.
6
Haargaard B, Wohlfahrt J, Fledelius HC, Rosenberg T, Melbye M. A nationwide Danish study of 1027 cases of congenital/infantile cataracts: etiological and clinical classifications. Ophthalmology. 2004;111:2292-2298.
7
Gilbert CE, Canovas R, Hagan M, Rao S, Foster A. Causes of childhood blindness: results from west Africa, south India and Chile. Eye (Lond). 1993;7:184-188.
8
Gasper C, Trivedi RH, Wilson ME. Complications of Pediatric Cataract Surgery. Dev Ophthalmol. 2016;57:69-84.
9
Vander Veen DK. Pediatric cataracts and other lens abnormalities. In: Wright KW, Strube YNJ, eds. Pediatric Ophthalmology and Strabismus (3rd ed). New York; Oxford; 2012:762-797.
10
Perucho-Martinez S, De-la-Cruz-Bertolo J, Tejada-Palacios P. [Pediatric cataracts: epidemiology and diagnosis. Retrospective review of 79 cases]. Arch Soc Esp Oftalmol. 2007;82:37-42.
11
Rahi JS, Dezateux C. Congenital and infantile cataract in the United Kingdom: underlying or associated factors. British Congenital Cataract Interest Group. Invest Ophthalmol Vis Sci. 2000;41:2108-2114.
12
Francis PJ, Moore AT. Genetics of childhood cataract. Curr Opin Ophthalmol. 2004;15:10-15.
13
Reis LM, Semina EV. Genetic landscape of isolated pediatric cataracts: extreme heterogeneity and variable inheritance patterns within genes. Hum Genet. 2019;138:847-863.
14
Hansen L, Mikkelsen A, Nürnberg P, Nürnberg G, Anjum I, Eiberg H, Rosenberg T. Comprehensive mutational screening in a cohort of Danish families with hereditary congenital cataract. Invest Ophthalmol Vis Sci. 2009;50:3291-3303.
15
Pös O, Budis J, Szemes T. Recent trends in prenatal genetic screening and testing. F1000Res. 2019;8:1000.
16
Yahalom C, Macarov M, Lazer-Derbeko G, Altarescu G, Imbar T, Hyman JH, Eldar-Geva T, Blumenfeld A. Preimplantation genetic diagnosis as a strategy to prevent having a child born with an heritable eye disease. Ophthalmic Genet. 2018;39:450-456.
17
Weisschuh N, Aisenbrey S, Wissinger B, Riess A. Identification of a novel CRYBB2 missense mutation causing congenital autosomal dominant cataract. Mol Vis. 2012;18:174-180.
18
Forrester JV, Dick AD, McMenamin PG, Roberts F. Biochemistry and cell biology. In: Forrester JV, Dick AD, McMenamin PG, Roberts F, eds. The Eye: Basic Sciences in Practice (3rd ed). Philadelphia; Elsevier; 2008:171-261.
19
Li J, Xia CH, Wang E, Yao K, Gong X. Screening, Genetics, Risk Factors, and Treatment of Neonatal Cataracts. Birth Defects Res. 2017;109:734-743.
20
Shiels A, Hejtmancik JF. Molecular Genetics of Cataract. Prog Mol Biol Transl Sci. 2015;134:203-218.
21
Shiels A, Hejtmancik JF. Mutations and mechanisms in congenital and age-related cataracts. Exp Eye Res. 2017;156:95-102.
22
Hejtmancik JF. Congenital cataracts and their molecular genetics. Semin Cell Dev Biol. 2008;19:134-149.
23
Narumi Y, Nishina S, Tokimitsu M, Aoki Y, Kosaki R, Wakui K, Azuma N, Murata T, Takada F, Fukushima Y, Kosho T. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature. Am J Med Genet A. 2014;164:1272-1276.
24
Devi RR, Yao W, Vijayalakshmi P, Sergeev YV, Sundaresan P, Hejtmancik JF. Crystallin gene mutations in Indian families with inherited pediatric cataract. Mol Vis. 2008;14:1157-1170.
25
Chen J, Wang Q, Cabrera PE, Zhong Z, Sun W, Jiao X, Chen Y, Govindarajan G, Naeem MA, Khan SN, Ali MH, Assir MZ, Rahman FU, Qazi ZA, Riazuddin S, Akram J, Riazuddin SA, Hejtmancik JF. Molecular Genetic Analysis of Pakistani Families With Autosomal Recessive Congenital Cataracts by Homozygosity Screening. Invest Ophthalmol Vis Sci. 2017;58:2207-2217.
26
Li D, Wang S, Ye H, Tang Y, Qiu X, Fan Q, Rong X, Liu X, Chen Y, Yang J, Lu Y. Distribution of gene mutations in sporadic congenital cataract in a Han Chinese population. Mol Vis. 2016;22:589-598.
27
Taylan Sekeroglu H, Utine GE, Alikasifoglu M. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective. Turk J Ophthalmol. 2016;46:299-300.
28
Wright CF, FitzPatrick DR, Firth HV. Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 2018;19:253-268.
29
Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci U S A. 2009;106:19096-19101.
30
Seaby EG, Pengelly RJ, Ennis S. Exome sequencing explained: a practical guide to its clinical application. Brief Funct Genomics. 2016;15:374-384.
31
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405-424.
32
Nykamp K, Anderson M, Powers M, Garcia J, Herrera B, Ho YY, Kobayashi Y, Patil N, Thusberg J, Westbrook M; Invitae Clinical Genomics Group, Topper S. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. Genet Med. 2017;19:1105-1117.
33
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30:418-426.
34
Burke K, Clarke A. The challenge of consent in clinical genome-wide testing. Arch Dis Child. 2016;101:1048-1052.
35
Musleh M, Ashworth J, Black G, Hall G. Improving diagnosis for congenital cataract by introducing NGS genetic testing. BMJ Qual Improv Rep. 2016;5:211094.
36
Gillespie RL, O’Sullivan J, Ashworth J, Bhaskar S, Williams S, Biswas S, Kehdi E, Ramsden SC, Clayton-Smith J, Black GC, Lloyd IC. Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology. 2014;121:2124-2137.
37
Kondo Y, Saitsu H, Miyamoto T, Lee BJ, Nishiyama K, Nakashima M, Tsurusaki Y, Doi H, Miyake N, Kim JH, Yu YS, Matsumoto N. Pathogenic mutations in two families with congenital cataract identified with whole-exome sequencing. Mol Vis. 2013;19:384-389.
38
Reis LM, Tyler RC, Muheisen S, Raggio V, Salviati L, Han DP, Costakos D, Yonath H, Hall S, Power P, Semina EV. Whole exome sequencing in dominant cataract identifies a new causative factor, CRYBA2, and a variety of novel alleles in known genes. Hum Genet. 2013;132:761-770.
39
Wang KJ, Zha X, Chen DD, Zhu SQ. Mutation Analysis of Families with Autosomal Dominant Congenital Cataract: A Recurrent Mutation in the CRYBA1/A3 Gene Causing Congenital Nuclear Cataract. Curr Eye Res. 2018;43:304-307.
40
Mohebi M, Akbari A, Babaei N, Sadeghi A, Heidari M. Identification of a De Novo 3bp Deletion in CRYBA1/A3 Gene in Autosomal Dominant Congenital Cataract. Acta Med Iran. 2016;54:778-783.
41
Zhang J, Zhang Y, Fang F, Mu W, Zhang N, Xu T, Cao Q. Congenital cataracts due to a novel 2bp deletion in CRYBA1/A3. Mol Med Rep. 2014;10:1614-1618.
42
Zhu Y, Shentu X, Wang W, Li J, Jin C, Yao K. A Chinese family with progressive childhood cataracts and IVS3+1G>A CRYBA3/A1 mutations. Mol Vis. 2010;16:2347-2353.
43
Yu Y, Li J, Xu J, Wang Q, Yu Y, Yao K. Congenital polymorphic cataract associated with a G to A splice site mutation in the human beta-crystallin gene CRYbetaA3/A1. Mol Vis. 2012;18:2213-2220.
44
Yang Z, Su D, Li Q, Yang F, Ma Z, Zhu S, Ma X. A novel T-->G splice site mutation of CRYBA1/A3 associated with autosomal dominant nuclear cataracts in a Chinese family. Mol Vis. 2012;18:1283-1288.
45
Jiao X, Kabir F, Irum B, Khan AO, Wang Q, Li D, Khan AA, Husnain T, Akram J, Riazuddin S, Hejtmancik JF, Riazuddin SA. A Common Ancestral Mutation in CRYBB3 Identified in Multiple Consanguineous Families with Congenital Cataracts. PloS One. 2016;11:e0157005.
46
Gonzalez-Huerta LM, Messina-Baas O, Urueta H, Toral-Lopez J, Cuevas-Covarrubias SA. A CRYGC gene mutation associated with autosomal dominant pulverulent cataract. Gene. 2013;529:181-185.
47
Vanita V, Singh D. A missense mutation in CRYGD linked with autosomal dominant congenital cataract of aculeiform type. Mol Cell Biochem. 2012;368:167-172.