Meta-Analysis

Diabetic Retinopathy Screening Approaches in Developing Countries:

A Systematic Review and Meta-Analysis

® Yudistira Yudistiral, ® Kevin Anggakusuma Hendrawan2, ® Ari Andayani3, ® Ni Made Ari Suryathi3, ® Titiek Ernawati2,
® Alyssa Claudia Valerie Gunawan!, ® Ni Puru Kostarika Melia Daradila%

1Widya Mandala Catholic University Faculty of Medicine, Surabaya, Indonesia
2Widya Mandala Catholic University Faculty of Medicine, Department of Ophthalmology, Surabaya, Indonesia
3Udayana University Faculty of Medicine, Department of Ophthalmology, Denpasar, Indonesia
4Udayana University Faculty of Medicine, Denpasar, Indonesia

Abstract

Objectives: Diabetic retinopathy (DR) is one of the primary causes
of vision loss among people living with diabetes and is expected to
rise globally in the coming years. Effective screening strategies are
essential, particularly in developing countries where resources and
access to specialized care are limited. Our objective was to assess how
accurately different screening methods detect DR, specifically artificial
intelligence (AI)-based tools, portable fundus cameras, and trained non-
ophthalmologist personnel, implemented in a developing country.

Materials and Methods: A literature search was conducted in
ScienceDirect, PubMed, and the Cochrane Library. Study quality was
assessed using the Quality Assessment of Diagnostic Accuracy Studies 2
tool. While all included studies were reviewed qualitatively, only those
evaluating Al-based screening tools were included in the meta-analysis.
Meta-analysis was performed using MetaDisc 2.0 to calculate pooled
sensitivity, specificity, diagnostic odds ratio, and likelihood ratios for any
DR, referable DR, and vision-threatening DR.

Results: A total of 25 studies were included, with 21 Al-based studies
eligible for the meta-analysis. The pooled sensitivity and specificity
respectively were 0.890 (95% confidence interval [CI}: 0.845-0.924) and
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0.900 (95% CI: 0.832-0.942) for any DR, 0.933 (95% CI: 0.890-0.960)
and 0.903 (95% CI: 0.871-0.928) for referable DR, and 0.891 (95% CI:
0.393-0.990) and 0.936 (95% CI: 0.837-0.977) for vision-threatening
DR. Meta-regression identified camera type as a significant factor.
Portable fundus cameras and general physicians showed good agreement
with the gold standards.

Conclusion: These findings support the potential of Al-assisted DR
screening in low-resource settings and highlight the complementary roles
of portable imaging and task-shifting to trained non-specialists.

Keywords: Diabetic retinopathy screening, artificial intelligence,
portable fundus camera, non-specialist, developing countries

Introduction

Diabetes mellitus (DM) is a long-term metabolic disorder that
may result in microvascular and macrovascular complications. As
living standards have improved significantly, changes in dietary
habits and lifestyles have contributed to a steady rise in the
prevalence of DM. The primary microvascular complication
associated with DM is diabetic retinopathy (DR). It is the
leading cause of vision impairment among adults and older
individuals." The global incidence of DR is expected to rise
significantly, increasing from approximately 103 million people
in 2020 to an estimated 130 million by 2030 and nearly 161
million by 2045.> Meanwhile, cases of vision-threatening
diabetic retinopathy (VIDR) are projected to grow by 26.3%,
reaching 36 million by 2030 and 44.82 million by 2045.°

The ideal method for diagnosing DR is a thorough
eye examination with pupil dilation, performed by an
ophthalmologist utilizing either an indirect ophthalmoscope
or a slit lamp biomicroscope. However, various obstacles limit
optimal DR screening, such as limited healthcare access, time
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limitations, substantial personnel costs, insufficient awareness
and comprehension, and inadequate care coordination. In
clinical trials, the Early Treatment Diabetic Retinopathy Study
(ETDRS) seven-standard field protocol, comprising 7 stereoscopic
30-degree fundus photographs, has long been considered the
benchmark for DR assessment. Nevertheless, single-field fundus
imaging is a practical and effective alternative, particularly
considering the logistical, financial, and time-related limitations
that make the ETDRS approach unsuitable for routine screening.’

The current recommended guidelines for DR management
strategies strongly focus on screening and fundus evaluation.
Recent technological advancements, including improved camera
technology and artificial intelligence (AI), are becoming more
affordable and accessible in low- and middle-income countries.
Digitizing health records for individuals with DR would
support the creation of a registry, allowing for efficient patient
tracking, monitoring disease progression, and assessing referral
and treatment outcomes.® Therefore, this study aimed to present
an overview of the implementation of DR screening modalities
in developing countries, including using Al, fundus camera
technology, and other community-based screening, and compare
them to opportunistic-based screening approaches.

Materials and Methods

Data Sources and Search Strategy

This review followed the guidelines outlined in the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses.”®
The study was registered in the International Prospective
Register of Systematic Reviews (CRD420251007510). Seven
reviewers independently searched for studies published in
PubMed, ScienceDirect, and the Cochrane database for relevant
articles. The following search terms were used to identify
potentially relevant articles: “diabetic retinopathy” AND
“screening” AND “community based” OR “telemedicine” OR
“teleophthalmology” OR “artificial intelligence” OR “camera”
AND “developing countries” OR “low-income countries” OR
“middle income countries.” The terms from each category were
independently compared and cross-referenced with those from
other categories.

Selection Criteria and Selection

This systematic review and meta-analysis included studies
conducted in developing countries (i.e., low- and middle-
income countries) that involved participants with type 1 or
type 2 DM, and provided data on the sensitivity, specificity, or
agreement level of the screening methods used. The screening
modalities included Al, telemedicine, camera technology, or
other community-based programs. The selected studies must
have also compared these interventional screening modalities
with standard care screening. The “developing countries” in
this research were classified based on World Bank data when
the studies were conducted. Any country categorized as a
low- or middle-income country was included under the term
“developing countries.”

Studies were excluded if they lacked sufficient data, focused
solely on the prevalence of DR or on comorbid eye diseases, or
were case reports, guidelines, editorials, commentaries, opinions,
or reviews. Titles and abstracts of the selected articles were
screened by seven reviewers, with full texts of potentially eligible
studies examined for final inclusion. Any disagreements were
resolved through discussion.

Quality Assessment

The seven reviewers independently assessed the quality of
all included studies using the Quality Assessment of Diagnostic
Accuracy Studies 2 (QUADAS-2) tool.” The QUADAS-2 scale
comprised four bias risk assessment domains: patient selection,
index test, reference standard, and flow and timing. Each domain
included two or three individual questions. Risk in a domain was
considered low if all questions were answered affirmatively. This
scale also evaluated applicability of the study based on patient
selection, index test, and reference standard.

Data Extraction and Analysis

After article selection, the seven reviewers summarized and
extracted data related to the screening methods’ diagnostic
accuracy. These data included total participants, the country
where the study was conducted, interventional screening
methods, technical characteristics (pupil dilation status, Al
system, device), indicators measured, and outcomes such as
DR type, sensitivity, specificity, and agreement. Since not all
studies analyzed each of these indicators, our meta-analysis was
further divided into subgroups based on the available uniform
indicators. We used the web application MetaDisc 2.0 for
the outcome variables of true positives, false positives, false
negatives, and true negatives. We also generated a summary
receiver operating characteristic (SROC) curve and forest plots
to visualize the pooled results. The bivariate I test was used to
assess heterogeneity resulting from a potential non-threshold
effect in this meta-analysis. If I’ exceeds 50%, it is deemed
considerable heterogeneity. MetaDisc 2.0 supports bivariate
meta-analysis and provides global heterogeneity (bivariate I?),
but does not compute subgroup-specific I? directly.

Next, subgroup analysis and meta-regression techniques
(pupil dilation status, Al algorithm, and camera device) were
applied to diagnostic accuracy and heterogeneity to evaluate
the possible impact of the covariates. This approach allowed
us to maximize its diagnostic meta-analysis strength while
acknowledging its limitations. To assess diagnostic accuracy,
a bivariate random-effects model was employed to derive
pooled sensitivity, specificity, diagnostic odds ratio (DOR), and
likelihood ratios (LR + and LR-). The area under the SROC curve
reflected the AI's performance in diagnosing DR.

Results

Study Selection and Characteristics

Figure 1 summarizes the literature search and selection
process. Initially, a total of 3,216 relevant articles were identified
from the specified databases using a structured retrieval approach.
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Figure 1. The study identification and selection process

Studies that were duplicates, conference abstracts, or one of
the article types specified in the exclusion criteria (case report,
guideline, editorial, commentary, opinion, or review, including
meta-analysis), those without available full texts, and those
with titles or abstracts unrelated to our review were excluded.
After this initial screening, 42 original studies remained.
Further evaluation led to the exclusion of papers with unclear
methodologies or incomplete or irrelevant targeted outcomes.
The characteristics of the remaining 25 studies are summarized
in Table 1. These studies used several screening modalities for
detecting DR: 21 evaluated the accuracy of Al-based/assisted
screening, 2 assessed the accuracy of handheld/smartphone-
based fundus cameras, and 2 reported about empowering
trained general physicians to enhance the coverage of DR
detection. The studies were performed in developing countries
in Asia (China, India, Sri Lanka, Philippines, and Thailand),
South America (Brazil and Mexico), and Africa (Zambia and
Kenya). The primary goal of screening studies involving general
physicians using an Al-based portable device was to evaluate
and compare their accuracy to standard care for identifying any
grade of DR, referable diabetic retinopathy (RDR), and VIDR.
Most studies employed the International Clinical Diabetic
Retinopathy Severity Scale classification system, where moderate
nonproliferative diabetic retinopathy (NPDR) or worse was
considered RDR, and severe NPDR or worse was considered
VTDR. We included more-than-mild DR in the RDR group.

Quality Assessment

Twenty-five studies were reviewed for methodological
quality and potential bias, following the QUADAS-2 guidelines.
The evaluation revealed a risk of patient selection bias in
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approximately 40% of the studies (Figure 2). An overview of the
quality assessment for each study is provided in Figure 3. For
the remaining three domains (index test, reference standard, and
flow and timing), the results suggested a generally low risk of
bias and few issues with applicability. No studies were excluded
following the quality assessment.

The Performance of Screening Modalities for Detecting
Diabetic Retinopathy

Twenty-one studies were included in the final meta-analysis
stage. These studies evaluated the performance of Al-based/
assisted screening for DR in developing countries compared
to standard/reference screening methods. They reported the
performance of Al in detecting RDR (n=18), VIDR (n=3), and
DR of any severity (n=11). We further evaluated AI’s performance
in detecting any DR and RDR based on pupil dilation status
(mydriatic or non-mydriatic), algorithm (convolutional neural
network [CNN} or deep learning [DL]), and camera device
(smartphone-based/portable retinal camera or retinal fundus
camera). Studies where pupil dilation was performed only
when necessary were classified under the non-mydriatic group,
whereas those employing combined methods were included in
the mydriatic group. Most studies excluded ungradable images,
while some performed analyses with and without the ungradable
images. In this review, we only included the results for gradable
images (see Table 2).

We used MetaDisc 2.0 to analyze the performance of
Al-based screening in the included studies. Table 2 presents the
pooled sensitivity, specificity, DOR, LR+, LR-, and I* for any
DR, RDR, and VTDR. The forest plots of sensitivity, specificity,
and SROC curve are shown in Figures 4, 5, and 0, respectively.
The SROC curves illustrate the overall diagnostic performance
of AI models for detecting any DR and RDR. The SROC curve
for RDR demonstrates a more concentrated confidence ellipse,
indicating greater consistency across studies. In contrast, the
wider prediction ellipse in the any-DR SROC suggests higher
variability in diagnostic accuracy. This variability may reflect
differences in study populations, image quality, or Al model
architectures. Overall, the AI models exhibited more stable
and reliable performance in detecting RDR, whereas their
effectiveness in identifying any DR appears more heterogeneous.

The I? values were high overall, with 0.809 for any DR
and 0.82 for RDR, indicating substantial heterogeneity. We
also performed a meta-regression with MetaDisc 2.0 using the
subgroup analysis parameters to explore potential sources of
heterogeneity. The outcomes are presented in Tables 3 and 4. For
the meta-regression analysis, only studies utilizing CNN or DL
algorithms were included for the Al algorithm covariate because
one study employed a machine learning approach, which was
insufficient to form a meaningful subgroup or allow for reliable
meta-regression. In addition, one study was also excluded from
the meta-regression evaluating pupil dilation status and camera
type because it did not clearly state whether images were
obtained using a mydriatic or non-mydriatic method, nor did it
specify the type of camera used.
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These exclusions were made to maintain consistency in covariate
classification and preserve the validity of the meta-regression
analysis. However, all excluded studies were still included in
the overall pooled analysis of diagnostic accuracy. We found that
for any DR, none of the covariates significantly explained the
heterogeneity. In contrast, for RDR detection, p values indicated
statistical significance for camera device (p<0.05), suggesting
that variations in the type of camera used for RDR detection
could contribute to the heterogeneity across studies.

Two studies evaluated handheld or smartphone-based
fundus imaging (SBFI) as a portable device alternative to
standard fundus photography. Wintergerst et al.'"’ compared
four SBFI modalities, three using direct and one using indirect
ophthalmoscopy. The images were compared against reference
standards of 7-field color fundus photography. Meanwhile,
indirect ophthalmoscopy conducted by a specialist was evaluated
for image clarity, coverage area, duration of examination, and
accuracy in diagnosing DR.

Among 381 eyes of 193 subjects, all SBFI methods produced
clear images, but direct SBFI had more artifacts and lower
contrast than indirect SBFI. Across different smartphone-based
imaging systems, sensitivity for any DR detection ranged from
67% to 79% while specificity remained high, between 98%
and 100%. For RDR (moderate NPDR or worse), sensitivity
varied between 76% and 87%, with specificity between 96%
and 100%. Detection of severe DR (severe NPDR or PDR)
achieved 100% sensitivity and specificity with some devices.
For diabetic maculopathy, sensitivity ranged from 79% to 83%,
while specificity was consistently 100%. The authors concluded
that indirect ophthalmoscopy-based SBFI provided the highest
diagnostic accuracy, with a strong agreement with the reference
standard (Cohen’s kappa: 0.868)."

Salongcay et al.'' evaluated non-mydriatic and mydriatic
handheld retinal imaging versus ETDRS 7-standard field fundus
photography in 225 eyes of 116 patients. For detection of any
DR, non-mydriatic devices demonstrated sensitivities ranging
from 80% to 89% and specificities between 88% and 97%.
Sensitivity for RDR was 87%-93%, while specificity varied from
76% to 92%. For VIDR (severe NPDR or worse, including
PDR and DME), sensitivity ranged from 83% to 88% but
specificity was lower, ranging from 69% to 86%. Smartscope
NM and Aurora/RetinaVue-700 MD images achieved 80%
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Table 2. Results of subgroup analysis for performance of Al-based screening

Categories S;‘;:‘ub;; geor(l)slft(iivity g’;}f‘éls)l’ edficity | hoR 95% €D LR+ (95% CI) IR- (95% CID) P
(95% CD)

Categories of DR

Any DR 11 0.890 (0.845-0.924) | 0.900 (0.832-0.942) | 72.680 (40.102-131.723) 8.867 (5.256-14.956) 0.122(0.087-0.172) | 0.809

RDR 18 0.933 (0.89-0.96) 0.903 (0.871-0.928) 130.617 (74.629-228.609) | 9.665 (7.271-12.849) 0.074 (0.045-0.123) | 0.82

VIDR 3 0.891 (0.393-0.990) | 0.936 (0.837-0.977) 120.198 (7.706-1874.779) | 13.972(5.027-38.834) | 0.116(0.012-1.117) | NA

Pupil dilation status

Mydriatic

Any DR 5 0.904 (0.839-0.944) | 0.874(0.747-0.942) | 64.965 (27.304-154.574) 7.153 (3.453-14.817) 0.11 (0.066-0.184) NA

RDR 6 0.963 (0.907-0.986) | 0.863 (0.79-0.914) 163.695 (57.747-464.023) | 7.047 (4.521-10.985) 0.043 (0.017-0.109) | NA

Non-mydriatic

Any DR 6 0.877 (0.808-0.924) | 0.918(0.835-0.961) | 79.761 (36.096-176.244) 10.663 (5.267-21.587) | 0.134 (0.086-0.209) | NA

RDR 11 0.908 (0.84-0.949) 0.92 (0.887-0.944) 113.552 (57.141-225.654) | 11.382 (8.048-16.097) | 0.1 (0.057-0.177) NA

Al Algorithm

Convolutional neural networks

Any DR 6 0.879 (0.81-0.925) 0.923 (0.851-0.961) | 86.348 (50.429-147.851) 11.349 (5.997-21.478) | 0.131 (0.086-0.202) | NA

RDR 9 0.934 (0.869-0.968) | 0.898 (0.849-0.932) 124.164 (57.798-266.734) | 9.158 (6.19-13.549) 0.074 (0.037-0.147) | NA

Deep learning

Any DR 4 0.929 (0.862-0.964) | 0.892 (0.767-0.954) 107.024 (50.597-226.378) | 8.572 (3.909-18.799) 0.08 (0.043-0.15) NA

RDR 9 0.933 (0.864-0.968) | 0.909 (0.862-0.941) 138.245 (62.156-307.479) | 10.248 (6.78-15.489) 0.074 (0.036-0.152) | NA

Camera device

Smartphone-based/portable camera

Any DR 7 0.916 (0.872-0.946) | 0.906 (0.822-0.953) 104.602 (57.669-189.729) | 9.733 (5.119-18.509) 0.093 (0.063-0.138) | NA

RDR 6 0.97 (0.929-0.988) 0.856 (0.792-0.903) 194.987 (69.095-550.256) | 6.75 (4.602-9.901) 0.035 (0.014-0.085) | NA

Retinal fundus camera

Any DR 4 0.831 (0.735-0.898) | 0.885 (0.744-0.953) 37.875 (17.862-80.309) 7.221 (3.234-16.123) 0.191 (0.126-0.289) | NA

RDR 11 0.894 (0.823-0.938) | 0.927 (0.897-0.948) 106.674 (52.418-217.09) 12.239(8.598-17.421) | 0.115 (0.068-0.195) | NA

AL Artificial intelligence, DOR: Diagnostic odds ratio, LR +: Positive likelihood ratio, LR-: Negative likelihood ratio, DR: Diabetic retinopathy, RDR: Referable diabetic retinopathy, VIDR: Vision

threatening diabetic retinopathy, NA: Not available

sensitivity and 95% specificity for detecting DR, meeting
thresholds for RDR and DME. However, no device met the 95%
specificity requirement for VIDR. Non-mydriatic imaging
also had higher ungradable rates (15.1%-38.3% for DR) than
mydriatic imaging (0%-33.8%)."!

Next, two studies evaluated the agreement and diagnostic
accuracy of non-ophthalmologists in DR screening. Cunha et
al.'? assessed the efficacy of non-mydriatic fundus photography
in DR screening by analyzing the diagnostic agreement across
qualified family physicians (FP), general ophthalmologists (GO),
and a retinal specialist. A total of 397 eyes of 200 individuals
with diabetes were examined. The retinal specialist diagnosed
DR in 41.8% of eyes, whereas GO1 and GO2 diagnosed DR in
28.7% and 45.8% of cases, respectively. Diagnostic agreement
between the FPs and the retinal specialist for DR diagnosis
varied from modest to considerable, with kappa values as follows:
FP1 = 0.56, FP2 = 0.69, FP3 = 0.73, FP4 = 0.71. Similarly,
agreement in DR severity grading was moderate to substantial

(FP1 = 0.51, FP2 = 0.66, FP3 = 0.69, FP4 = 0.64). However,
the agreement for DME diagnosis was lower, varying from fair
(FP1 = 0.33, FP2 = 0.39, FP3 = 0.37) to moderate (FP4 =
0.51)."

Furthermore, Piyasena et al.”’ evaluated the diagnostic
accuracy of a handheld non-mydriatic fundus camera in Sri Lanka,
where nine general physicians were trained by ophthalmologists
to perform DR screening. Two physicians with the highest
agreement with the retinal specialist (k = 0.8-0.9) were selected
as final graders. For any DR, sensitivity in non-mydriatic imaging
ranged from 78.3% to 82.7%, while specificity ranged from
70.4% to 76.2%. With pupil dilation, sensitivity ranged from
78.0% to 79.3%, and specificity improved to 89.2%-91.5%.
The kappa agreement value with a retinal specialist for any DR
improved from 0.42-0.47 in non-mydriatic imaging to 0.66-
0.68 after pupil dilation. For RDR, sensitivity in non-mydriatic
imaging ranged from 84.9% to 86.8%, while specificity
ranged from 71.7% to 77.3%. With pupil dilation, sensitivity
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Total
Study TP  (TP+FN) Sensitivity 95% CI
Natarajan et al., 2019 23 27 — 0.85 [0.66;0.96]
Sosale et al., 2020 210 252 = 0.83 [0.78;0.88]
Jain et al., 2021 127 143 = 0.89 [0.82;0.93]
Pawar et al., 2021 26 26 —a 1.00 [0.87;1.00]
Pei et al., 2022 295 324 = 0.91 [0.87;0.94]
Dong et al., 2022 104 139 — 0.75 [0.67;0.82]
Ming et al., 2021 16 18 —— 0.89 [0.65;0.99]
Rajalakshmi et al., 2018 186 204 = 0.91 [0.86;0.95]
Bawankar et al., 2017 183 191 = 0.96 [0.92;0.98]
Hansen et al., 2015 91 113 — 0.81 [0.72;0.87]
Malerbi et al., 2024 152 168 l : : : - | 0.90 [0.85;0.94]
0 02 04 06 08 1
(A) Sensitivity
Total
Study TP (TP+FN) Sensitivity 95% CI
Bellemo et al., 2019 327 354 = 0.92 [0.89;0.95]
Natarajan et al., 2019 15 15 e 1.00 [0.78;1.00]
Nunez do Rio et al., 2022 1291 1792 0.72 [0.70;0.74]
Gulshan et al., 2019 993 1091 0.91 [0.89;0.93]
Sosale et al., 2020 187 201 = 0.93 [0.89;0.96]
Penha et al., 2023 84 90 = 0.93 [0.86;0.98]
Jain et al., 2021 68 68 - 1.00 [0.95;1.00]
Pawar et al., 2021 20 20 —d 1.00 [0.83;1.00]
Malerbi et al., 2024 120 133 - 0.90 [0.84;0.95]
Pei et al., 2022 278 281 0.99 [0.97;1.00]
Dong et al., 2022 96 122 — 0.79 [0.70;0.86]
Ming et al., 2021 11 13 —a— 0.85 [0.55;0.98]
Zhang et al., 2020 8257 9912 0.83 [0.83;0.84]
Li et al., 2021 132 156 - 0.85 [0.78;0.90]
Yang et al., 2022 346 399 - 0.87 [0.83;0.90]
Al Turk et al., 2020 15991 16873 0.95 [0.94;0.95]
Rajalakshmi et al., 2018 141 142 = 0.99 [0.96; 1.00]
Noriega et al., 2021 48 50 : : : : : —*—I 0.96 [0.86;1.00]
(B) 0 02 04 06 08 1
Sensitivity
Total
Study TP (TP+FN) Sensitivity 95% ClI
Ruamviboonsuk et al., 2022 1958 2142 0.91 [0.90;0.93]
Dong et al., 2022 20 59 — 0.34 [0.22;0.47]
Rajalakshmi et al., 2018 111 112 P 0.99 [0.95;1.00]
Random effects model [ : é] 0.89 [0.39;0.99]
(© 0 02 04 06 08 1
Sensitivity

Figure 4. Forest plots of pooled sensitivity in all the studies included in the meta-analysis. A) Forest plot of any
diabetic retinopathy (DR). B) Forest plot of referable DR. C) Forest plot of vision-threatening DR
TP: True positives, FN: False negatives, CI: Confidence interval

improved to 88.7%-92.5% and specificity increased to 94.9%-
96.4%. The kappa agreement values for RDR detection were
0.23-0.29 in non-mydriatic imaging and increased to 0.68-0.76
in mydriatic imaging. For maculopathy detection, sensitivity in
non-mydriatic imaging was 89.2%, specificity was 70.1%, and
the kappa agreement with the reference standard was 0.29. The
percentage of ungradable images was 43.4% in non-mydriatic

imaging and decreased to 12.8% after pupil dilation."
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Discussion

This study assessed the diagnostic effectiveness of different
DR detection methods to increase screening availability in
developing countries. Recent technological advancements hold
significant potential to enhance healthcare services, especially in
developing countries. This research analyzed 25 studies, of which
21 were included in the meta-analysis and 4 were included in the
qualitative review.
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Total
Study TN (TN+FP) Specificity 95% ClI
Natarajan et al., 2019 171 186 - 0.92 [0.87;0.95]
Sosale et al., 2020 619 648 0.96 [0.94;0.97]
Jain et al., 2021 1087 1151 0.94 [0.93;0.96]
Pawar et al., 2021 66 112 —— 0.59 [0.49;0.68]
Pei et al., 2022 183 225 = 0.81 [0.76;0.86]
Dong et al., 2022 285 304 = 0.94 [0.90;0.96]
Ming et al., 2021 150 155 - 0.97 [0.93;0.99]
Rajalakshmi et al., 2018 345 356 0.97 [0.95;0.98]
Bawankar et al., 2017 84 105 —a 0.80 [0.71;0.87]
Hansen et al., 2015 2093 2993 0.70 [0.68;0.72]
Malerbi et al., 2024 126 139 | : : : : . 5 | 0.91 [0.85;0.95]
0 02 04 06 08 1
(A) Specificity
Total
Study TN (TN+FP) Specificity 95% ClI
Bellemo et al., 2019 1086 1220 0.89 [0.87;0.91]
Natarajan et al., 2019 175 198 - 0.88 [0.83;0.92]
Nunez do Rio et al.,, 2022 8064 9407 0.86 [0.85;0.86]
Gulshan et al., 2019 1842 1958 0.94 [0.93;0.95]
Sosale et al., 2020 647 699 0.93 [0.90;0.94]
Penha et al., 2023 427 596 - 0.72 [0.68;0.75]
Jain et al., 2021 1098 1226 0.90 [0.88;0.91]
Pawar et al., 2021 108 118 - 0.92 [0.85;0.96]
Malerbi et al., 2024 148 174 . 0.85 [0.79;0.90]
Pei et al., 2022 247 268 - 0.92 [0.88;0.95]
Dong et al., 2022 297 321 - 0.93 [0.89;0.95]
Ming et al., 2021 157 160 - 0.98 [0.95;1.00]
Zhang et al., 2020 28933 33754 0.86 [0.85;0.86]
Li etal., 2021 947 991 0.96 [0.94;0.97]
Yang et al., 2022 540 563 0.96 [0.94;0.97]
Al Turk et al., 2020 20944 22827 0.92 [0.91;0.92]
Rajalakshmi et al., 2018 106 154 —. 0.69 [0.61;0.76]
Noriega et al., 2021 45 50 | : : l ]—0— | 0.90 [0.78;0.97]
0 02 04 06 038 1
(B) Specificity
Total
Study TN (TN+FP) Specificity 95% ClI
Ruamviboonsuk et al., 2022 5254 5509 0.95 [0.95;0.96]
Dong et al., 2022 374 384 | 0.97 [0.95;0.99]
Rajalakshmi et al., 2018 148 184 = 0.80 [0.74;0.86]
Random effects model | | | ] | Q'I 0.94 [0.84;0.98]
(C) 0 02 04 06 08 1

Specificity

Figure 5. Forest plots of pooled specificity in all the studies included in the meta-analysis. A) Forest plot of any
diabetic retinopathy (DR). B) Forest plot of referable DR. C) Forest plot of vision-threatening DR
TN: True negatives, FP: False positives, CI: Confidence interval

Among the 21 meta-analyzed studies, the diagnostic
performance of Al-based/assisted screening demonstrated strong
diagnostic ability with a pooled sensitivity of 0.890, specificity
of 0.900, and DOR of 72.680 for detecting DR. Similarly,
the diagnostic performance of Al-based/assisted screening for
detecting RDR had a pooled sensitivity of 0.933, specificity of
0.903, and an even higher DOR of 130.617, demonstrating high
accuracy for identifying more severe cases requiring referral.

Meanwhile, although only three studies evaluated VIDR,
the pooled results still suggest encouraging performance, with
pooled sensitivity at 0.891 and specificity at 0.936, though the
limited data warrant careful interpretation. These results exceeded
the Food and Drug Administration established 85% sensitivity
and 82.5% specificity endpoints.'* They are also consistent with
those found in earlier systematic reviews and meta-analyses
that evaluated the diagnostic accuracy of Al algorithms in DR
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Figure 6. Summary receiver operating characteristic (SROC) curve of included studies in data analysis. A) SROC
curve of any diabetic retinopathy (DR). B) SROC curve of referable DR

screening.”! Our results are also comparable to those of
meta-analyses on Al-based detection for other eye disease such as
glaucoma, pathologic myopia, and dry eye disease.'®'??
Furthermore, we conducted a subgroup analysis to investigate
the factors influencing Al performance in detecting any DR and
RDR. AT exhibited similar accuracy in detecting DR from both
non-mydriatic and mydriatic images. Mydriatic photographs
have slightly better sensitivity but slightly lower specificity
than non-mydriatic photographs. This result may be because
mydriasis produces more detailed images. False positives occur
due to subtle lesions or certain non-DR retinal abnormalities

270

including drusen, atrophy or hypertrophy of the retinal pigment
epithelium, telangiectatic vessels near the macula, tessellated
fundus, and retinal vein occlusion.?'*** However, retinal lesions
unrelated to DR still indicate that the patient must consult an
ophthalmologist or retina specialist. Therefore, they cannot be
considered false positives and of no concern in terms of clinical
implications. Meanwhile, in non-mydriatic photographs, the
retinal images tend to be darker, may not capture all subtle DR
lesions, and could result in a higher percentage of ungradable
images.**
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Table 3. Meta-regression of included studies for detecting any diabetic retinopathy

Subgroup Parameter Estimate LCL UCL p value
Relative sensitivity 1.03 0.945 1.123 0.497
Pupil dilation status* Relative specificity 0.952 0.84 1.079 0.427
Global test comparison 0.661
Relative sensitivity 0.946 0.872 1.027 0.209
AlgorithmP Relative specificity 1.035 0.923 1.16 0.545
Global test comparison 0.433
Relative sensitivity 1.102 0.991 1.224 0.047
Device® Relative specificity 1.024 0.898 1.168 0.719
Global test comparison 0.051
“Whether pupil dilation is done: non-mydiriatic or mydriatic
bAlgorithm of the artificial intelligence model used: deep learning and convolutional neural networks
“Device used to take retinal photogtaphs: smartphone-based o portable camera and retinal fundus camera
LCL: Lower confidence limit, UCL: Upper confidence limit
Table 4. Meta-regression of included studies for detecting referable diabetic retinopathy
Subgroup Parameter Estimate LCL UCL p value
Relative sensitivity 1.061 0.992 1.135 0.097
Pupil dilation status* Relative specificity 0.938 0.869 1.013 0.079
Global test comparison 0.09
Relative sensitivity 1.001 0.932 1.075 0.975
AlgorithmP Relative specificity 0.988 0.928 1.051 0.703
Global test comparison 0.927
Relative sensitivity 1.086 1.015 1.162 0.013
Device® Relative specificity 0.924 0.862 0.99 0.018
Global test comparison 0.005

“Whether pupil dilation is done: non-mydriatic or mydriatic

LCL: Lower confidence limit, UCL: Upper confidence limit

PAlgorithm of the artificial intelligence model used: deep learning and convolutional neural networks
“Device used to take retinal photographs: smartphone-based or portable camera and retinal fundus camera

For the Al algorithm architecture, there was minimal
difference in pooled performance between CNN-based models
and broader DL algorithms. The pooled sensitivity for DL
models was slightly higher than for CNN models, but CNN
models achieved better specificity. However, these differences
were not statistically significant. Our results suggested that
choosing between DL and a CNN architecture did not contribute
substantially to diagnostic performance. DL is an advanced
branch of machine learning that utilizes multi-layered neural
networks to analyze extensive datasets, allowing systems to
identify complex visual patterns autonomously. CNN, a specific
DL variant, is optimized for image analysis, especially in medical
diagnostics.”> CNN-based models utilize convolutional layers
to accurately recognize and categorize retinal abnormalities,
including microaneurysms, hemorrhages, and exudates, essential
for DR detection.*

sensitivity, they may be more appropriate for initial screening to

Since DL-based models demonstrate greater

minimize missed cases. On the other hand, CNN models could
be utilized as reliable confirmation tools, helping to reduce
unnecessary referrals due to false positives. Joseph et al.”’ also

reported in their meta-analysis that the DL algorithm, which
included CNN, demonstrated high accuracy compared to machine
learning. Only one study in our review used machine learning.
When this study was excluded, the pooled sensitivity and
specificity increased to 90% and 91%, respectively, for detecting
any DR. The improved efficiency and diagnostic accuracy of DL
over traditional machine learning has revolutionized the ability
to detect DR using fundus images.?%%

Three studies incorporated Al-generated heatmaps to
enhance interpretability in DR screening. Bellemo et al.”® used
heatmaps to highlight specific areas in the retinal fundus images
that most significantly influence CNN determination. These
visualizations illustrate the Al system’s decision-making process
and explain features that may encourage trust in Al models.”
The heatmaps of the lesions provided by the AI can also be

» also showed that

utilized for patient education.”’ Noriega et al.
incorporating attention heatmaps highlighted DR lesions and
improved grader sensitivity when used in an assistive screening
approach. Sayres et al.’*® further investigated the heatmaps’

impact on ophthalmologists’ grading accuracy and confidence.
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They found that while heatmaps improved sensitivity for
RDR, they also led to overdiagnosis in cases with no DR,
increasing false positives for mild NPDR. This result might be
because heatmaps can highlight pathological features but cannot
effectively indicate the absence of disease. Despite this initial
increase in overdiagnosis, grader accuracy improved over time,
suggesting that clinicians adapted to interpreting heatmaps with
experience.”’

Moreover, although 7-field ETDRS group stereoscopic
color fundus photography remains the gold standard for DR,
its high cost and time demands have led to the use of handheld
and smartphone-based cameras, especially in community-based
screening initiatives. Regarding camera type, smartphone-based
or portable fundus cameras demonstrated higher sensitivity
than desktop fundus cameras. However, they exhibited a slight
decrease in specificity, particularly for RDR detection. In our
meta-analysis, camera type emerged as a significant source
of heterogeneity, which suggested that hardware differences,
including image quality and field of view, directly influence Al
performance, especially in detecting more severe disease stages.
These results align with those reported by Tan et al.”, who found
a pooled sensitivity and specificity of 87% and 94% for any DR
and 91% and 89% for RDR, respectively. However, while they
observed a progressive increase in sensitivity and specificity as
DR severity advanced (pooled sensitivity and specificity were
39% and 95% for mild NPDR, 71% and 95% for moderate
NPDR, and 80% and 97% for PDR), our meta-analysis did
not specifically assess the accuracy for each DR stage. Such an
analysis was not possible due to differences in study methods,
reference standards, and DR classification approaches.

Furthermore, we examined studies that specifically evaluated
smartphone-based and handheld fundus imaging for DR
detection to understand the impact of device type on diagnostic
performance. Wintergerst et al.'® found that SBFI, especially
when using indirect ophthalmoscopy, offered the highest-quality
images, the widest field of view, and demonstrated excellent
sensitivity and specificity (0.79-0.99 for any DR and 1.0-1.0 for
severe DR), and excellent agreement with the reference standard
(Cohen’s kappa 0.868). Salongcay et al.'! also reported that non-
mydriatic and mydriatic handheld retinal imaging obtained
good to excellent kappa agreement values with the ETDRS
7-standard field photography. However, the non-mydriatic
method was linked to higher rates of ungradable images and
lower levels of agreement." Similarly, Prathiba et al.?? found that
the non-mydriatic retinal camera demonstrated good agreement
with standard tabletop fundus photography. Nevertheless, as
with other non-mydriatic approaches, a higher proportion
of ungradable images was observed, reinforcing the need for
selective pupil dilation to improve image quality and reduce
screening errors.”” These findings suggest that for community-
based DR screening programs, device selection should consider
the trade-off between portability, image quality, and the need for
pupil dilation to optimize diagnostic accuracy and reduce false
positives.
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Although this review focuses on diagnostic accuracy, real-
world factors like patient adherence are crucial for successful DR
screening programs. The RAIDERS trial in Rwanda evaluated
how Al-assisted screening influenced follow-up adherence.
Mathenge et al.”® found that immediate Al feedback increased
referral adherence by 30.1% (51.5% vs. 39.6%, p=0.048) and a
faster median time to follow-up (4 vs. 8 days) compared to human
grading. Similarly, Liu et al.* reported a threefold improvement
in adherence (55.4% vs. 18.7%) after implementing Al-based
screening in a low-income primary care setting. These findings
highlight the potential benefits of Al-assisted screening beyond
its diagnostic performance. It also aligns with findings from
public perception studies where patients demonstrated high
confidence in Al-generated medical diagnoses, suggesting that
trust in Al may positively influence screening adherence.”
Al-based/assisted screening may also improve real-world patient
engagement by reducing delays and enhancing adherence to
follow-up care.

Expanding DR screening by task-shifting to non-
ophthalmologists is an important strategy, especially in
resource-limited settings where access to specialists is scarce.
Two studies evaluated the diagnostic agreement between non-
ophthalmologists (FPs/general physicians) and retinal specialists
in DR screening. Cunha et al.'? evaluated FP performance in DR
screening, comparing it with retinal specialists. They found that
FPs achieved moderate to substantial agreement with a retinal
specialist (k=0.56-0.73), though agreement on macular edema
was fair to moderate (k=0.33-0.51). However, similar agreement
was also demonstrated between GOs and the retinal specialist,
which suggests that FPs and GOs had similar diagnostic skills.'?

Similarly, Piyasena et al."® reported that general physicians
achieved high agreement for any DR detection (k=0.42-0.47 in
non-mydriatic imaging, improving to 0.66-0.68 in mydriatic
imaging) and for RDR (k=0.23-0.29 non-mydriatic, improving
to 0.68-0.76 mydriatic). However, the kappa agreement value
for maculopathy detection was lower (k=0.29 non-mydriatic).
The study also highlighted that ungradable images were high
(43.4%) in non-mydriatic imaging but decreased to 12.8% after
pupil dilation, reinforcing the importance of image quality for
accurate DR screening.” Both studies suggest that trained non-
ophthalmologists can effectively detect RDR, but challenges
remain in maculopathy detection and handling ungradable
images. These findings underscore the need for further training
and calibration of primary care providers if task-shifting strategies
are to be effectively deployed in low-resource settings.

Our review has several strengths. One of the key strengths
is its focus on DR screening in developing countries, where
access to ophthalmologists is often limited. By including various
screening modalities, such as Al-based/assisted identification,
smartphone-based or portable fundus imaging, and trained
non-ophthalmologist-assisted screening, this review incorporates
a wider range of diagnostic methods, allowing for a broader
comparison of different screening approaches and providing
valuable insights into practical alternatives for resource-
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limited settings. We also performed a meta-regression analysis
incorporating multiple relevant factors, offering important
insights. Additionally, most of the included studies reflect real-
world screening conditions, enhancing the applicability of these
findings to national DR screening programs and public health
initiatives.

Nevertheless, this review has several limitations. First,
the included studies cover a range of study designs, including
retrospective, prospective, cross-sectional, and randomized
controlled experiments. The heterogeneity in study design may
introduce variability in the reported diagnostic petformance of
the AI models. Second, the meta-regression analysis identified
camera type as a significant source of heterogeneity, suggesting
that differences in imaging hardware, such as resolution and
field of view, impact diagnostic accuracy. However, mydriatic
status and Al algorithm type did not significantly contribute
to heterogeneity, indicating that other unaccounted factors may
still influence screening accuracy. Another limitation is the
unequal distribution of studies across subgroups. Moreover, this
meta-analysis focused primarily on diagnostic accuracy, without
assessing whether earlier detection through Al-assisted or non-
ophthalmologist screening improves patient outcomes such as
treatment adherence and vision preservation.

Conclusion

This review highlights the growing feasibility of integrating
Al-based and portable imaging technologies into DR screening
programs in developing countries. Portable fundus cameras
integrated with Al-based software can potentially lower the
workload of ophthalmologists while reducing missed or incorrect
diagnoses, ultimately helping to prevent vision loss caused
by DR. Our findings suggest that both non-mydriatic and
mydriatic imaging perform well, making them promising
options for large-scale screening. However, pupil dilation should
be considered for patients with ungradable retinal images to
improve sensitivity without compromising specificity, as it can
enhance image quality and reduce missed diagnoses. Ideally, this
approach should be conducted under the supervision of trained
physicians to maintain screening accuracy, reduce unnecessary
referrals, and provide timely and appropriate care. These findings
also emphasize the importance of quality assurance measures,
including regular training, structured feedback loops, and
possibly integrating Al decision support to assist non-specialist
graders. Standardizing grading criteria, improving image
quality, and refining AI models will be essential to developing
reliable and scalable DR screening solutions, particularly in
resource-limited settings. Our study demonstrated diagnostic
accuracy across modalities, which can guide the development
of more inclusive, scalable, and economical national screening
programs. This insight might help policymakers choose the
appropriate technologies based on workforce availability and
local infrastructure. Future research to improve diagnostic
performance should assess how these screening techniques could
affect clinical outcomes including early intervention, treatment

adherence, and long-term vision preservation. These outcome-
based studies are essential to fully demonstrate the public
health benefits of integrating Al-assisted screening into routine
diabetes care.
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