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Introduction
Diabetes mellitus (DM) is a long-term metabolic disorder that 

may result in microvascular and macrovascular complications. As 
living standards have improved significantly, changes in dietary 
habits and lifestyles have contributed to a steady rise in the 
prevalence of DM. The primary microvascular complication 
associated with DM is diabetic retinopathy (DR). It is the 
leading cause of vision impairment among adults and older 
individuals.1 The global incidence of DR is expected to rise 
significantly, increasing from approximately 103 million people 
in 2020 to an estimated 130 million by 2030 and nearly 161 
million by 2045.2,3 Meanwhile, cases of vision-threatening 
diabetic retinopathy (VTDR) are projected to grow by 26.3%, 
reaching 36 million by 2030 and 44.82 million by 2045.3

The ideal method for diagnosing DR is a thorough 
eye examination with pupil dilation, performed by an 
ophthalmologist utilizing either an indirect ophthalmoscope 
or a slit lamp biomicroscope. However, various obstacles limit 
optimal DR screening, such as limited healthcare access, time 
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limitations, substantial personnel costs, insufficient awareness 
and comprehension, and inadequate care coordination.4 In 
clinical trials, the Early Treatment Diabetic Retinopathy Study 
(ETDRS) seven-standard field protocol, comprising 7 stereoscopic 
30-degree fundus photographs, has long been considered the 
benchmark for DR assessment. Nevertheless, single-field fundus 
imaging is a practical and effective alternative, particularly 
considering the logistical, financial, and time-related limitations 
that make the ETDRS approach unsuitable for routine screening.5

The current recommended guidelines for DR management 
strategies strongly focus on screening and fundus evaluation. 
Recent technological advancements, including improved camera 
technology and artificial intelligence (AI), are becoming more 
affordable and accessible in low- and middle-income countries. 
Digitizing health records for individuals with DR would 
support the creation of a registry, allowing for efficient patient 
tracking, monitoring disease progression, and assessing referral 
and treatment outcomes.6 Therefore, this study aimed to present 
an overview of the implementation of DR screening modalities 
in developing countries, including using AI, fundus camera 
technology, and other community-based screening, and compare 
them to opportunistic-based screening approaches.

Materials and Methods

Data Sources and Search Strategy
This review followed the guidelines outlined in the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses.7,8 
The study was registered in the International Prospective 
Register of Systematic Reviews (CRD420251007510). Seven 
reviewers independently searched for studies published in 
PubMed, ScienceDirect, and the Cochrane database for relevant 
articles. The following search terms were used to identify 
potentially relevant articles: “diabetic retinopathy” AND 
“screening” AND “community based” OR “telemedicine” OR 
“teleophthalmology” OR “artificial intelligence” OR “camera” 
AND “developing countries” OR “low-income countries” OR 
“middle income countries.” The terms from each category were 
independently compared and cross-referenced with those from 
other categories.

Selection Criteria and Selection
This systematic review and meta-analysis included studies 

conducted in developing countries (i.e., low- and middle-
income countries) that involved participants with type 1 or 
type 2 DM, and provided data on the sensitivity, specificity, or 
agreement level of the screening methods used. The screening 
modalities included AI, telemedicine, camera technology, or 
other community-based programs. The selected studies must 
have also compared these interventional screening modalities 
with standard care screening. The “developing countries” in 
this research were classified based on World Bank data when 
the studies were conducted. Any country categorized as a 
low- or middle-income country was included under the term 
“developing countries.” 

Studies were excluded if they lacked sufficient data, focused 
solely on the prevalence of DR or on comorbid eye diseases, or 
were case reports, guidelines, editorials, commentaries, opinions, 
or reviews. Titles and abstracts of the selected articles were 
screened by seven reviewers, with full texts of potentially eligible 
studies examined for final inclusion. Any disagreements were 
resolved through discussion.

Quality Assessment
The seven reviewers independently assessed the quality of 

all included studies using the Quality Assessment of Diagnostic 
Accuracy Studies 2 (QUADAS-2) tool.9 The QUADAS-2 scale 
comprised four bias risk assessment domains: patient selection, 
index test, reference standard, and flow and timing. Each domain 
included two or three individual questions. Risk in a domain was 
considered low if all questions were answered affirmatively. This 
scale also evaluated applicability of the study based on patient 
selection, index test, and reference standard.

Data Extraction and Analysis
After article selection, the seven reviewers summarized and 

extracted data related to the screening methods’ diagnostic 
accuracy. These data included total participants, the country 
where the study was conducted, interventional screening 
methods, technical characteristics (pupil dilation status, AI 
system, device), indicators measured, and outcomes such as 
DR type, sensitivity, specificity, and agreement. Since not all 
studies analyzed each of these indicators, our meta-analysis was 
further divided into subgroups based on the available uniform 
indicators. We used the web application MetaDisc 2.0 for 
the outcome variables of true positives, false positives, false 
negatives, and true negatives. We also generated a summary 
receiver operating characteristic (SROC) curve and forest plots 
to visualize the pooled results. The bivariate I2 test was used to 
assess heterogeneity resulting from a potential non-threshold 
effect in this meta-analysis. If I2 exceeds 50%, it is deemed 
considerable heterogeneity. MetaDisc 2.0 supports bivariate 
meta-analysis and provides global heterogeneity (bivariate I2), 
but does not compute subgroup-specific I2 directly. 

Next, subgroup analysis and meta-regression techniques 
(pupil dilation status, AI algorithm, and camera device) were 
applied to diagnostic accuracy and heterogeneity to evaluate 
the possible impact of the covariates. This approach allowed 
us to maximize its diagnostic meta-analysis strength while 
acknowledging its limitations. To assess diagnostic accuracy, 
a bivariate random-effects model was employed to derive 
pooled sensitivity, specificity, diagnostic odds ratio (DOR), and 
likelihood ratios (LR+ and LR-). The area under the SROC curve 
reflected the AI’s performance in diagnosing DR.

Results

Study Selection and Characteristics
Figure 1 summarizes the literature search and selection 

process. Initially, a total of 3,216 relevant articles were identified 
from the specified databases using a structured retrieval approach. 
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Studies that were duplicates, conference abstracts, or one of 
the article types specified in the exclusion criteria (case report, 
guideline, editorial, commentary, opinion, or review, including 
meta-analysis), those without available full texts, and those 
with titles or abstracts unrelated to our review were excluded. 
After this initial screening, 42 original studies remained. 
Further evaluation led to the exclusion of papers with unclear 
methodologies or incomplete or irrelevant targeted outcomes.

The characteristics of the remaining 25 studies are summarized 
in Table 1. These studies used several screening modalities for 
detecting DR: 21 evaluated the accuracy of AI-based/assisted 
screening, 2 assessed the accuracy of handheld/smartphone-
based fundus cameras, and 2 reported about empowering 
trained general physicians to enhance the coverage of DR 
detection. The studies were performed in developing countries 
in Asia (China, India, Sri Lanka, Philippines, and Thailand), 
South America (Brazil and Mexico), and Africa (Zambia and 
Kenya). The primary goal of screening studies involving general 
physicians using an AI-based portable device was to evaluate 
and compare their accuracy to standard care for identifying any 
grade of DR, referable diabetic retinopathy (RDR), and VTDR. 
Most studies employed the International Clinical Diabetic 
Retinopathy Severity Scale classification system, where moderate 
nonproliferative diabetic retinopathy (NPDR) or worse was 
considered RDR, and severe NPDR or worse was considered 
VTDR. We included more-than-mild DR in the RDR group.

Quality Assessment
Twenty-five studies were reviewed for methodological 

quality and potential bias, following the QUADAS-2 guidelines. 
The evaluation revealed a risk of patient selection bias in 

approximately 40% of the studies (Figure 2). An overview of the 
quality assessment for each study is provided in Figure 3. For 
the remaining three domains (index test, reference standard, and 
flow and timing), the results suggested a generally low risk of 
bias and few issues with applicability. No studies were excluded 
following the quality assessment.

The Performance of Screening Modalities for Detecting 
Diabetic Retinopathy

Twenty-one studies were included in the final meta-analysis 
stage. These studies evaluated the performance of AI-based/
assisted screening for DR in developing countries compared 
to standard/reference screening methods. They reported the 
performance of AI in detecting RDR (n=18), VTDR (n=3), and 
DR of any severity (n=11). We further evaluated AI’s performance 
in detecting any DR and RDR based on pupil dilation status 
(mydriatic or non-mydriatic), algorithm (convolutional neural 
network [CNN] or deep learning [DL]), and camera device 
(smartphone-based/portable retinal camera or retinal fundus 
camera). Studies where pupil dilation was performed only 
when necessary were classified under the non-mydriatic group, 
whereas those employing combined methods were included in 
the mydriatic group. Most studies excluded ungradable images, 
while some performed analyses with and without the ungradable 
images. In this review, we only included the results for gradable 
images (see Table 2). 

We used MetaDisc 2.0 to analyze the performance of 
AI-based screening in the included studies. Table 2 presents the 
pooled sensitivity, specificity, DOR, LR+, LR-, and I2 for any 
DR, RDR, and VTDR. The forest plots of sensitivity, specificity, 
and SROC curve are shown in Figures 4, 5, and 6, respectively. 
The SROC curves illustrate the overall diagnostic performance 
of AI models for detecting any DR and RDR. The SROC curve 
for RDR demonstrates a more concentrated confidence ellipse, 
indicating greater consistency across studies. In contrast, the 
wider prediction ellipse in the any-DR SROC suggests higher 
variability in diagnostic accuracy. This variability may reflect 
differences in study populations, image quality, or AI model 
architectures. Overall, the AI models exhibited more stable 
and reliable performance in detecting RDR, whereas their 
effectiveness in identifying any DR appears more heterogeneous.

The I2 values were high overall, with 0.809 for any DR 
and 0.82 for RDR, indicating substantial heterogeneity. We 
also performed a meta-regression with MetaDisc 2.0 using the 
subgroup analysis parameters to explore potential sources of 
heterogeneity. The outcomes are presented in Tables 3 and 4. For 
the meta-regression analysis, only studies utilizing CNN or DL 
algorithms were included for the AI algorithm covariate because 
one study employed a machine learning approach, which was 
insufficient to form a meaningful subgroup or allow for reliable 
meta-regression. In addition, one study was also excluded from 
the meta-regression evaluating pupil dilation status and camera 
type because it did not clearly state whether images were 
obtained using a mydriatic or non-mydriatic method, nor did it 
specify the type of camera used. 

Figure 1. The study identification and selection process
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These exclusions were made to maintain consistency in covariate 
classification and preserve the validity of the meta-regression 
analysis. However, all excluded studies were still included in 
the overall pooled analysis of diagnostic accuracy. We found that 
for any DR, none of the covariates significantly explained the 
heterogeneity. In contrast, for RDR detection, p values indicated 
statistical significance for camera device (p<0.05), suggesting 
that variations in the type of camera used for RDR detection 
could contribute to the heterogeneity across studies.

Two studies evaluated handheld or smartphone-based 
fundus imaging (SBFI) as a portable device alternative to 
standard fundus photography. Wintergerst et al.10 compared 
four SBFI modalities, three using direct and one using indirect 
ophthalmoscopy. The images were compared against reference 
standards of 7-field color fundus photography. Meanwhile, 
indirect ophthalmoscopy conducted by a specialist was evaluated 
for image clarity, coverage area, duration of examination, and 
accuracy in diagnosing DR. 

Among 381 eyes of 193 subjects, all SBFI methods produced 
clear images, but direct SBFI had more artifacts and lower 
contrast than indirect SBFI. Across different smartphone-based 
imaging systems, sensitivity for any DR detection ranged from 
67% to 79% while specificity remained high, between 98% 
and 100%. For RDR (moderate NPDR or worse), sensitivity 
varied between 76% and 87%, with specificity between 96% 
and 100%. Detection of severe DR (severe NPDR or PDR) 
achieved 100% sensitivity and specificity with some devices. 
For diabetic maculopathy, sensitivity ranged from 79% to 83%, 
while specificity was consistently 100%. The authors concluded 
that indirect ophthalmoscopy-based SBFI provided the highest 
diagnostic accuracy, with a strong agreement with the reference 
standard (Cohen’s kappa: 0.868).10

Salongcay et al.11 evaluated non-mydriatic and mydriatic 
handheld retinal imaging versus ETDRS 7-standard field fundus 
photography in 225 eyes of 116 patients. For detection of any 
DR, non-mydriatic devices demonstrated sensitivities ranging 
from 80% to 89% and specificities between 88% and 97%. 
Sensitivity for RDR was 87%-93%, while specificity varied from 
76% to 92%. For VTDR (severe NPDR or worse, including 
PDR and DME), sensitivity ranged from 83% to 88% but 
specificity was lower, ranging from 69% to 86%. Smartscope 
NM and Aurora/RetinaVue-700 MD images achieved 80% 

Figure 2. Risk of bias graph chart with QUADAS-2
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies 2 

Figure 3. Risk of bias for individual studies included in the review
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sensitivity and 95% specificity for detecting DR, meeting 
thresholds for RDR and DME. However, no device met the 95% 
specificity requirement for VTDR. Non-mydriatic imaging 
also had higher ungradable rates (15.1%-38.3% for DR) than 
mydriatic imaging (0%-33.8%).11

Next, two studies evaluated the agreement and diagnostic 
accuracy of non-ophthalmologists in DR screening. Cunha et 
al.12 assessed the efficacy of non-mydriatic fundus photography 
in DR screening by analyzing the diagnostic agreement across 
qualified family physicians (FP), general ophthalmologists (GO), 
and a retinal specialist. A total of 397 eyes of 200 individuals 
with diabetes were examined. The retinal specialist diagnosed 
DR in 41.8% of eyes, whereas GO1 and GO2 diagnosed DR in 
28.7% and 45.8% of cases, respectively. Diagnostic agreement 
between the FPs and the retinal specialist for DR diagnosis 
varied from modest to considerable, with kappa values as follows: 
FP1 = 0.56, FP2 = 0.69, FP3 = 0.73, FP4 = 0.71. Similarly, 
agreement in DR severity grading was moderate to substantial 

(FP1 = 0.51, FP2 = 0.66, FP3 = 0.69, FP4 = 0.64). However, 
the agreement for DME diagnosis was lower, varying from fair 
(FP1 = 0.33, FP2 = 0.39, FP3 = 0.37) to moderate (FP4 = 
0.51).12 

Furthermore, Piyasena et al.13 evaluated the diagnostic 
accuracy of a handheld non-mydriatic fundus camera in Sri Lanka, 
where nine general physicians were trained by ophthalmologists 
to perform DR screening. Two physicians with the highest 
agreement with the retinal specialist (k = 0.8-0.9) were selected 
as final graders. For any DR, sensitivity in non-mydriatic imaging 
ranged from 78.3% to 82.7%, while specificity ranged from 
70.4% to 76.2%. With pupil dilation, sensitivity ranged from 
78.0% to 79.3%, and specificity improved to 89.2%-91.5%. 
The kappa agreement value with a retinal specialist for any DR 
improved from 0.42-0.47 in non-mydriatic imaging to 0.66-
0.68 after pupil dilation. For RDR, sensitivity in non-mydriatic 
imaging ranged from 84.9% to 86.8%, while specificity 
ranged from 71.7% to 77.3%. With pupil dilation, sensitivity 

Table 2. Results of subgroup analysis for performance of AI-based screening

Categories
Number 
of studies

Pooled 
sensitivity  
(95% CI)

Pooled specificity 
(95% CI)

DOR (95% CI) LR+ (95% CI) LR- (95% CI) I2

Categories of DR

Any DR 11 0.890 (0.845-0.924) 0.900 (0.832-0.942) 72.680 (40.102-131.723) 8.867 (5.256-14.956) 0.122 (0.087-0.172) 0.809

RDR 18 0.933 (0.89-0.96) 0.903 (0.871-0.928) 130.617 (74.629-228.609) 9.665 (7.271-12.849) 0.074 (0.045-0.123) 0.82

VTDR 3 0.891 (0.393-0.990) 0.936 (0.837-0.977) 120.198 (7.706-1874.779) 13.972 (5.027-38.834) 0.116 (0.012-1.117) NA

Pupil dilation status

Mydriatic

Any DR 5 0.904 (0.839-0.944) 0.874 (0.747-0.942) 64.965 (27.304-154.574) 7.153 (3.453-14.817) 0.11 (0.066-0.184) NA

RDR 6 0.963 (0.907-0.986) 0.863 (0.79-0.914) 163.695 (57.747-464.023) 7.047 (4.521-10.985) 0.043 (0.017-0.109) NA

Non-mydriatic

Any DR 6 0.877 (0.808-0.924) 0.918 (0.835-0.961) 79.761 (36.096-176.244) 10.663 (5.267-21.587) 0.134 (0.086-0.209) NA

RDR 11 0.908 (0.84-0.949) 0.92 (0.887-0.944) 113.552 (57.141-225.654) 11.382 (8.048-16.097) 0.1 (0.057-0.177) NA

AI Algorithm

Convolutional neural networks

Any DR 6 0.879 (0.81-0.925) 0.923 (0.851-0.961) 86.348 (50.429-147.851) 11.349 (5.997-21.478) 0.131 (0.086-0.202) NA

RDR 9 0.934 (0.869-0.968) 0.898 (0.849-0.932) 124.164 (57.798-266.734) 9.158 (6.19-13.549) 0.074 (0.037-0.147) NA

Deep learning

Any DR 4 0.929 (0.862-0.964) 0.892 (0.767-0.954) 107.024 (50.597-226.378) 8.572 (3.909-18.799) 0.08 (0.043-0.15) NA

RDR 9 0.933 (0.864-0.968) 0.909 (0.862-0.941) 138.245 (62.156-307.479) 10.248 (6.78-15.489) 0.074 (0.036-0.152) NA

Camera device

Smartphone-based/portable camera

Any DR 7 0.916 (0.872-0.946) 0.906 (0.822-0.953) 104.602 (57.669-189.729) 9.733 (5.119-18.509) 0.093 (0.063-0.138) NA

RDR 6 0.97 (0.929-0.988) 0.856 (0.792-0.903) 194.987 (69.095-550.256) 6.75 (4.602-9.901) 0.035 (0.014-0.085) NA

Retinal fundus camera

Any DR 4 0.831 (0.735-0.898) 0.885 (0.744-0.953) 37.875 (17.862-80.309) 7.221 (3.234-16.123) 0.191 (0.126-0.289) NA

RDR 11 0.894 (0.823-0.938) 0.927 (0.897-0.948) 106.674 (52.418-217.09) 12.239 (8.598-17.421) 0.115 (0.068-0.195) NA

AI: Artificial intelligence, DOR: Diagnostic odds ratio, LR+: Positive likelihood ratio, LR-: Negative likelihood ratio, DR: Diabetic retinopathy, RDR: Referable diabetic retinopathy, VTDR: Vision 
threatening diabetic retinopathy, NA: Not available
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improved to 88.7%-92.5% and specificity increased to 94.9%-
96.4%. The kappa agreement values for RDR detection were 
0.23-0.29 in non-mydriatic imaging and increased to 0.68-0.76 
in mydriatic imaging. For maculopathy detection, sensitivity in 
non-mydriatic imaging was 89.2%, specificity was 70.1%, and 
the kappa agreement with the reference standard was 0.29. The 
percentage of ungradable images was 43.4% in non-mydriatic 
imaging and decreased to 12.8% after pupil dilation.13

Discussion

This study assessed the diagnostic effectiveness of different 
DR detection methods to increase screening availability in 
developing countries. Recent technological advancements hold 
significant potential to enhance healthcare services, especially in 
developing countries. This research analyzed 25 studies, of which 
21 were included in the meta-analysis and 4 were included in the 
qualitative review.

Figure 4. Forest plots of pooled sensitivity in all the studies included in the meta-analysis. A) Forest plot of any 
diabetic retinopathy (DR). B) Forest plot of referable DR. C) Forest plot of vision-threatening DR
TP: True positives, FN: False negatives, CI: Confidence interval
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Among the 21 meta-analyzed studies, the diagnostic 
performance of AI-based/assisted screening demonstrated strong 
diagnostic ability with a pooled sensitivity of 0.890, specificity 
of 0.900, and DOR of 72.680 for detecting DR. Similarly, 
the diagnostic performance of AI-based/assisted screening for 
detecting RDR had a pooled sensitivity of 0.933, specificity of 
0.903, and an even higher DOR of 130.617, demonstrating high 
accuracy for identifying more severe cases requiring referral.

Meanwhile, although only three studies evaluated VTDR, 
the pooled results still suggest encouraging performance, with 
pooled sensitivity at 0.891 and specificity at 0.936, though the 
limited data warrant careful interpretation. These results exceeded 
the Food and Drug Administration established 85% sensitivity 
and 82.5% specificity endpoints.14 They are also consistent with 
those found in earlier systematic reviews and meta-analyses 
that evaluated the diagnostic accuracy of AI algorithms in DR 

Figure 5. Forest plots of pooled specificity in all the studies included in the meta-analysis. A) Forest plot of any 
diabetic retinopathy (DR). B) Forest plot of referable DR. C) Forest plot of vision-threatening DR
TN: True negatives, FP: False positives, CI: Confidence interval
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screening.15,16,17 Our results are also comparable to those of 
meta-analyses on AI-based detection for other eye disease such as 
glaucoma, pathologic myopia, and dry eye disease.18,19,20

Furthermore, we conducted a subgroup analysis to investigate 
the factors influencing AI performance in detecting any DR and 
RDR. AI exhibited similar accuracy in detecting DR from both 
non-mydriatic and mydriatic images. Mydriatic photographs 
have slightly better sensitivity but slightly lower specificity 
than non-mydriatic photographs. This result may be because 
mydriasis produces more detailed images. False positives occur 
due to subtle lesions or certain non-DR retinal abnormalities 

including drusen, atrophy or hypertrophy of the retinal pigment 
epithelium, telangiectatic vessels near the macula, tessellated 
fundus, and retinal vein occlusion.21,22,23 However, retinal lesions 
unrelated to DR still indicate that the patient must consult an 
ophthalmologist or retina specialist. Therefore, they cannot be 
considered false positives and of no concern in terms of clinical 
implications. Meanwhile, in non-mydriatic photographs, the 
retinal images tend to be darker, may not capture all subtle DR 
lesions, and could result in a higher percentage of ungradable 
images.24 

Figure 6. Summary receiver operating characteristic (SROC) curve of included studies in data analysis. A) SROC 
curve of any diabetic retinopathy (DR). B) SROC curve of referable DR
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For the AI algorithm architecture, there was minimal 
difference in pooled performance between CNN-based models 
and broader DL algorithms. The pooled sensitivity for DL 
models was slightly higher than for CNN models, but CNN 
models achieved better specificity. However, these differences 
were not statistically significant. Our results suggested that 
choosing between DL and a CNN architecture did not contribute 
substantially to diagnostic performance. DL is an advanced 
branch of machine learning that utilizes multi-layered neural 
networks to analyze extensive datasets, allowing systems to 
identify complex visual patterns autonomously. CNN, a specific 
DL variant, is optimized for image analysis, especially in medical 
diagnostics.25 CNN-based models utilize convolutional layers 
to accurately recognize and categorize retinal abnormalities, 
including microaneurysms, hemorrhages, and exudates, essential 
for DR detection.26 Since DL-based models demonstrate greater 
sensitivity, they may be more appropriate for initial screening to 
minimize missed cases. On the other hand, CNN models could 
be utilized as reliable confirmation tools, helping to reduce 
unnecessary referrals due to false positives. Joseph et al.27 also 

reported in their meta-analysis that the DL algorithm, which 
included CNN, demonstrated high accuracy compared to machine 
learning. Only one study in our review used machine learning. 
When this study was excluded, the pooled sensitivity and 
specificity increased to 90% and 91%, respectively, for detecting 
any DR. The improved efficiency and diagnostic accuracy of DL 
over traditional machine learning has revolutionized the ability 
to detect DR using fundus images.25,26,27

Three studies incorporated AI-generated heatmaps to 
enhance interpretability in DR screening. Bellemo et al.28 used 
heatmaps to highlight specific areas in the retinal fundus images 
that most significantly influence CNN determination. These 
visualizations illustrate the AI system’s decision-making process 
and explain features that may encourage trust in AI models.28 
The heatmaps of the lesions provided by the AI can also be 
utilized for patient education.21 Noriega et al.29 also showed that 
incorporating attention heatmaps highlighted DR lesions and 
improved grader sensitivity when used in an assistive screening 
approach. Sayres et al.30 further investigated the heatmaps’ 
impact on ophthalmologists’ grading accuracy and confidence. 

Table 3. Meta-regression of included studies for detecting any diabetic retinopathy

Subgroup Parameter Estimate LCL UCL p value

Pupil dilation statusa

Relative sensitivity 1.03 0.945 1.123 0.497

Relative specificity 0.952 0.84 1.079 0.427

Global test comparison 0.661

Algorithmb

Relative sensitivity 0.946 0.872 1.027 0.209

Relative specificity 1.035 0.923 1.16 0.545

Global test comparison 0.433

Devicec

Relative sensitivity 1.102 0.991 1.224 0.047

Relative specificity 1.024 0.898 1.168 0.719

Global test comparison 0.051
aWhether pupil dilation is done: non-mydriatic or mydriatic
bAlgorithm of the artificial intelligence model used: deep learning and convolutional neural networks
cDevice used to take retinal photographs: smartphone-based or portable camera and retinal fundus camera
LCL: Lower confidence limit, UCL: Upper confidence limit

Table 4. Meta-regression of included studies for detecting referable diabetic retinopathy

Subgroup Parameter Estimate LCL UCL p value

Pupil dilation statusa

Relative sensitivity 1.061 0.992 1.135 0.097

Relative specificity 0.938 0.869 1.013 0.079

Global test comparison 0.09

Algorithmb

Relative sensitivity 1.001 0.932 1.075 0.975

Relative specificity 0.988 0.928 1.051 0.703

Global test comparison 0.927

Devicec

Relative sensitivity 1.086 1.015 1.162 0.013

Relative specificity 0.924 0.862 0.99 0.018

Global test comparison 0.005
aWhether pupil dilation is done: non-mydriatic or mydriatic
bAlgorithm of the artificial intelligence model used: deep learning and convolutional neural networks
cDevice used to take retinal photographs: smartphone-based or portable camera and retinal fundus camera
LCL: Lower confidence limit, UCL: Upper confidence limit
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They found that while heatmaps improved sensitivity for 
RDR, they also led to overdiagnosis in cases with no DR, 
increasing false positives for mild NPDR. This result might be 
because heatmaps can highlight pathological features but cannot 
effectively indicate the absence of disease. Despite this initial 
increase in overdiagnosis, grader accuracy improved over time, 
suggesting that clinicians adapted to interpreting heatmaps with 
experience.30

Moreover, although 7-field ETDRS group stereoscopic 
color fundus photography remains the gold standard for DR, 
its high cost and time demands have led to the use of handheld 
and smartphone-based cameras, especially in community-based 
screening initiatives. Regarding camera type, smartphone-based 
or portable fundus cameras demonstrated higher sensitivity 
than desktop fundus cameras. However, they exhibited a slight 
decrease in specificity, particularly for RDR detection. In our 
meta-analysis, camera type emerged as a significant source 
of heterogeneity, which suggested that hardware differences, 
including image quality and field of view, directly influence AI 
performance, especially in detecting more severe disease stages. 
These results align with those reported by Tan et al.31, who found 
a pooled sensitivity and specificity of 87% and 94% for any DR 
and 91% and 89% for RDR, respectively. However, while they 
observed a progressive increase in sensitivity and specificity as 
DR severity advanced (pooled sensitivity and specificity were 
39% and 95% for mild NPDR, 71% and 95% for moderate 
NPDR, and 80% and 97% for PDR), our meta-analysis did 
not specifically assess the accuracy for each DR stage. Such an 
analysis was not possible due to differences in study methods, 
reference standards, and DR classification approaches. 

Furthermore, we examined studies that specifically evaluated 
smartphone-based and handheld fundus imaging for DR 
detection to understand the impact of device type on diagnostic 
performance. Wintergerst et al.10 found that SBFI, especially 
when using indirect ophthalmoscopy, offered the highest-quality 
images, the widest field of view, and demonstrated excellent 
sensitivity and specificity (0.79-0.99 for any DR and 1.0-1.0 for 
severe DR), and excellent agreement with the reference standard 
(Cohen’s kappa 0.868). Salongcay et al.11 also reported that non-
mydriatic and mydriatic handheld retinal imaging obtained 
good to excellent kappa agreement values with the ETDRS 
7-standard field photography. However, the non-mydriatic 
method was linked to higher rates of ungradable images and 
lower levels of agreement.11 Similarly, Prathiba et al.32 found that 
the non-mydriatic retinal camera demonstrated good agreement 
with standard tabletop fundus photography. Nevertheless, as 
with other non-mydriatic approaches, a higher proportion 
of ungradable images was observed, reinforcing the need for 
selective pupil dilation to improve image quality and reduce 
screening errors.32 These findings suggest that for community-
based DR screening programs, device selection should consider 
the trade-off between portability, image quality, and the need for 
pupil dilation to optimize diagnostic accuracy and reduce false 
positives.

Although this review focuses on diagnostic accuracy, real-
world factors like patient adherence are crucial for successful DR 
screening programs. The RAIDERS trial in Rwanda evaluated 
how AI-assisted screening influenced follow-up adherence. 
Mathenge et al.33 found that immediate AI feedback increased 
referral adherence by 30.1% (51.5% vs. 39.6%, p=0.048) and a 
faster median time to follow-up (4 vs. 8 days) compared to human 
grading. Similarly, Liu et al.34 reported a threefold improvement 
in adherence (55.4% vs. 18.7%) after implementing AI-based 
screening in a low-income primary care setting. These findings 
highlight the potential benefits of AI-assisted screening beyond 
its diagnostic performance. It also aligns with findings from 
public perception studies where patients demonstrated high 
confidence in AI-generated medical diagnoses, suggesting that 
trust in AI may positively influence screening adherence.35 
AI-based/assisted screening may also improve real-world patient 
engagement by reducing delays and enhancing adherence to 
follow-up care.

Expanding DR screening by task-shifting to non-
ophthalmologists is an important strategy, especially in 
resource-limited settings where access to specialists is scarce. 
Two studies evaluated the diagnostic agreement between non-
ophthalmologists (FPs/general physicians) and retinal specialists 
in DR screening. Cunha et al.12 evaluated FP performance in DR 
screening, comparing it with retinal specialists. They found that 
FPs achieved moderate to substantial agreement with a retinal 
specialist (k=0.56-0.73), though agreement on macular edema 
was fair to moderate (k=0.33-0.51). However, similar agreement 
was also demonstrated between GOs and the retinal specialist, 
which suggests that FPs and GOs had similar diagnostic skills.12 

Similarly, Piyasena et al.13 reported that general physicians 
achieved high agreement for any DR detection (k=0.42-0.47 in 
non-mydriatic imaging, improving to 0.66-0.68 in mydriatic 
imaging) and for RDR (k=0.23-0.29 non-mydriatic, improving 
to 0.68-0.76 mydriatic). However, the kappa agreement value 
for maculopathy detection was lower (k=0.29 non-mydriatic). 
The study also highlighted that ungradable images were high 
(43.4%) in non-mydriatic imaging but decreased to 12.8% after 
pupil dilation, reinforcing the importance of image quality for 
accurate DR screening.13 Both studies suggest that trained non-
ophthalmologists can effectively detect RDR, but challenges 
remain in maculopathy detection and handling ungradable 
images. These findings underscore the need for further training 
and calibration of primary care providers if task-shifting strategies 
are to be effectively deployed in low-resource settings. 

Our review has several strengths. One of the key strengths 
is its focus on DR screening in developing countries, where 
access to ophthalmologists is often limited. By including various 
screening modalities, such as AI-based/assisted identification, 
smartphone-based or portable fundus imaging, and trained 
non-ophthalmologist-assisted screening, this review incorporates 
a wider range of diagnostic methods, allowing for a broader 
comparison of different screening approaches and providing 
valuable insights into practical alternatives for resource-
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limited settings. We also performed a meta-regression analysis 
incorporating multiple relevant factors, offering important 
insights. Additionally, most of the included studies reflect real-
world screening conditions, enhancing the applicability of these 
findings to national DR screening programs and public health 
initiatives. 

Nevertheless, this review has several limitations. First, 
the included studies cover a range of study designs, including 
retrospective, prospective, cross-sectional, and randomized 
controlled experiments. The heterogeneity in study design may 
introduce variability in the reported diagnostic performance of 
the AI models. Second, the meta-regression analysis identified 
camera type as a significant source of heterogeneity, suggesting 
that differences in imaging hardware, such as resolution and 
field of view, impact diagnostic accuracy. However, mydriatic 
status and AI algorithm type did not significantly contribute 
to heterogeneity, indicating that other unaccounted factors may 
still influence screening accuracy. Another limitation is the 
unequal distribution of studies across subgroups. Moreover, this 
meta-analysis focused primarily on diagnostic accuracy, without 
assessing whether earlier detection through AI-assisted or non-
ophthalmologist screening improves patient outcomes such as 
treatment adherence and vision preservation.

Conclusion

This review highlights the growing feasibility of integrating 
AI-based and portable imaging technologies into DR screening 
programs in developing countries. Portable fundus cameras 
integrated with AI-based software can potentially lower the 
workload of ophthalmologists while reducing missed or incorrect 
diagnoses, ultimately helping to prevent vision loss caused 
by DR. Our findings suggest that both non-mydriatic and 
mydriatic imaging perform well, making them promising 
options for large-scale screening. However, pupil dilation should 
be considered for patients with ungradable retinal images to 
improve sensitivity without compromising specificity, as it can 
enhance image quality and reduce missed diagnoses. Ideally, this 
approach should be conducted under the supervision of trained 
physicians to maintain screening accuracy, reduce unnecessary 
referrals, and provide timely and appropriate care. These findings 
also emphasize the importance of quality assurance measures, 
including regular training, structured feedback loops, and 
possibly integrating AI decision support to assist non-specialist 
graders. Standardizing grading criteria, improving image 
quality, and refining AI models will be essential to developing 
reliable and scalable DR screening solutions, particularly in 
resource-limited settings. Our study demonstrated diagnostic 
accuracy across modalities, which can guide the development 
of more inclusive, scalable, and economical national screening 
programs. This insight might help policymakers choose the 
appropriate technologies based on workforce availability and 
local infrastructure. Future research to improve diagnostic 
performance should assess how these screening techniques could 
affect clinical outcomes including early intervention, treatment 

adherence, and long-term vision preservation. These outcome-
based studies are essential to fully demonstrate the public 
health benefits of integrating AI-assisted screening into routine 
diabetes care. 
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