This page is for health professionals only.

NO
I AM NOT
A HEALTHCARE PROFESSIONAL.
The Management of Uveitic Glaucoma in Children
PDF
Cite
Share
Request
Review
VOLUME: 49 ISSUE: 5
P: 283 - 293
October 2019

The Management of Uveitic Glaucoma in Children

Turk J Ophthalmol 2019;49(5):283-293
1. Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals NHS Trust, United Kingdom
2. Department of Ophthalmology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
3. First Department of Ophthalmology, General Hospital of Athens G. Gennimatas, Medical School, National and Kapodistrian University of Athens, Greece
No information available.
No information available
Received Date: 05.12.2018
Accepted Date: 25.04.2019
Publish Date: 24.10.2019
PDF
Cite
Share
Request

ABSTRACT

Children comprise a unique population of patients in regard to the diagnostic and therapeutic approach of uveitic glaucoma. The management of glaucoma secondary to uveitis in children is extremely challenging and presents various difficulties, which are associated both with the underlying uveitis and the young age of the patients. The treatment of uveitic glaucoma calls for a thorough and individualized approach, involving both pharmacotherapeutic and surgical modalities. It appears that the efficient control of inflammatory activity plays a significant role in the final visual outcome of these patients. This study aims to review the current literature about the management of uveitic glaucoma in pediatric patients.

Keywords:
Glaucoma, uveitis, children

Introduction

The evaluation and management of uveitis in children is extremely challenging for the ophthalmologists that have to confront this clinical entity, whereas glaucoma in children is a potentially blinding condition. Uveitis can lead to several complications, such as secondary glaucoma, cataracts, synechiae, band keratopathy, and macular edema.1 There is some evidence that the rates of complications differ between adults and children, and some of the complications may be unique to children.1 Uveitic glaucoma represents a special category of secondary glaucoma in both adult and pediatric populations. The clinical outcomes of uveitic glaucoma in children depend on several factors (e.g., type, severity, and duration of the disease) and are often guarded, especially in complicated cases. The successful management of uveitic glaucoma in children calls for an early and accurate diagnosis and control of inflammation and intraocular pressure (IOP) to reduce the risk of progressive damage to the optic nerve and the risk of amblyopia.2 Treatment with ocular and systemic steroids, as well as with corticosteroid-sparing therapy has significantly contributed to the control of inflammation and improved the visual prognosis.3 In many cases, the successes of medical treatments are limited because of poor compliance or intolerable local or systemic side effects.2 Moreover, many uveitic patients with glaucoma may need surgical intervention to control IOP and preserve vision. There is high risk of significant visual loss from complications of uveitis and/or glaucoma over the lifespan of these patients, and this has significant impacts in terms of financial burdens, quality of life, and loss of productivity for the patients.2 This study focuses on the clinical features and management of uveitic glaucoma in childhood.

Discussion

In the past, patients with uveitic glaucoma had poor visual outcome due to delayed diagnosis and the limited anti-inflammatory and antiglaucoma therapeutic options.1,2 Over the last two decades, advances in diagnostic tools and new systemic anti-inflammatory medications have provided clinicians with more sophisticated approaches that can prevent late consequences of uveitis.1 However, uveitis remains a potentially devastating condition that can have severe impacts on vision through various complications such as glaucoma, cataract formation, macular edema, and formation of synechiae.3 More specifically, cataracts are very often associated with uveitis, either directly due to the inflammation or indirectly due to the use of topical and oral steroids. In eyes with chronic inflammation activity, cataract extraction can cause an exuberant postoperative inflammatory reaction, which can lead to complications including glaucoma, hypotony, macular edema, and optic disc swelling.50

In young children, regardless of whether reduced visual acuity derives from glaucoma, uncontrolled inflammation, or other complications, it can lead to amblyopia and consequently to life-long visual disability. This is also expected to affect the child’s education and performance at school. Early, prompt, and efficient management of uveitic glaucoma is significant, especially in patients of amblyogenic age (i.e., younger than 7-8 years old).21 Amblyopia should be treated with occlusion therapy, and when the issue is resolved and the eye is not inflamed, the child can have a refraction test for optimizing visual function. Furthermore, in children that have gone through postoperative aphakic rehabilitation, the presence of a specialist pediatric contact lens optometrist would be more than helpful.21

The treatment of glaucoma secondary to uveitis has several challenges, especially when it comes to surgical intervention. One of the major issues is the fact that in many cases there is an intense inflammatory reaction, which complicates both the control of uveitis and eye pressure.41 The administration of topical and periocular steroids has been correlated with high risk of several ocular complications in children. IOP elevation and steroid-induced glaucoma in particular can develop rapidly in children, become refractory to treatment, and persist even after stopping topical corticosteroids. Likewise in the adult population, systemic corticosteroids should be used mainly for limited periods due to the wide spectrum of adverse systemic effects. Moreover, systemic steroids can cause adverse ocular effects including glaucoma, cataract, and retinal and choroidal emboli.1,2 Additionally, when it comes to deciding the most suitable surgical intervention in those patients, it is important to take into account the status of the angle (i.e., whether the angle is open and the extent of synechiae formation). Ophthalmic surgeons should have a strategy that will offer the maximal chances of preserving vision and IOP over the long term with minimal ocular damage.41

Holistic management is one of the cornerstones of a successful approach to pediatric glaucoma. The management of this vulnerable group of patients calls for the expertise and collaboration of a multidisciplinary team. It is vital for the ophthalmologist to be in direct and continuous communication with the pediatricians and rheumatologists in order to ensure a thorough investigation for underlying systemic diseases and prompt initiation of disease-modifying agents if required. Before the administration of systemic medications, clinicians and pharmacists need to check that any kind of immunomodulatory was prescribed only if laboratory investigations were within normal limits.21 A pediatric glaucoma or uveitis nurse specialist could play a critical role in the training of patients and family in the administration of medications, especially when it comes to subcutaneous drugs.

Adequate monitoring of the uveitic glaucoma and response to treatment is crucial in children. Special attention should be paid to visual acuity and any changes in vision in children at risk for amblyopia. Regular and periodic follow-up examinations should be carried out to assess levels of inflammation (i.e., anterior chamber cells and flare, vitreous humor cells and vitreous haze), signs of uncontrolled inflammation (i.e., keratic precipitates and iris nodules), possible complications, and evidence of drug toxicity.2 Children should be followed up more closely than adults for evidence of uveitic glaucoma, as glaucomatous optic disc changes can progress very quickly in pediatric patients. Therefore, frequent visual field testing and dilated pupil examination of the optic discs along with optical coherence tomography when needed are strongly recommended. Chronic anterior uveitis patients with no previous systemic disorders (at presentation) should be questioned about the development of joint symptoms due to the fact that arthritis may present after the onset of ocular inflammation in some patients.21

Assessment of compliance with the treatment regimen is also critical, because children may need to receive their medications while at school or even apply the topical medications on their own. Compliance issues are common among teenagers that may need to receive a long-term drug therapy. Thus, parents and/or guardians must support and assist with the administration of medications, making sure that doses are not skipped. Considering that pediatric glaucoma can be a chronic, sight-threatening, and stressful condition, support from a team of child psychologists would be beneficial to help the patients and their parents cope with the disease and to improve compliance to treatment and regular follow-up.21

Conclusion

Childhood uveitic glaucoma is one of the most challenging entities in the field of glaucoma, not only because of the unpredictable nature of uveitis but also the difficulty of surgical management due to the risk of failure and complications. Over the last 70 years, a number of operations have been incorporated in the management of childhood glaucoma. Interestingly, most of them have stood the test of time, whereas others have still to prove their efficacy. The fact that there is a wide spectrum of approaches in regard with the management of uveitic glaucoma in children reflects the diversity of its causes and the complexity of its pathogenesis. The challenge of controlling both the inflammatory process and the glaucoma progression together with the absence of controlled trials to facilitate decision-making adds to the perplexity of the situation. The prognosis for childhood uveitic glaucoma has improved substantially over the last decades. However, increasing surgical success rates and reducing complications remains a Gordian knot in modern ophthalmology for specialists who want to ensure a favorable and long-lasting visual outcome for their young patients.

References

1
Holland GN, Stiehm ER. Special considerations in the evaluation and management of uveitis in children. Am J Ophthalmol. 2003;135:867-878.
2
Kaur S, Kaushik S, Singh Pandav S. Pediatric Uveitic Glaucoma. J Curr Glaucoma Pract. 2013;7:115-117.
3
Sung VC, Barton K. Management of inflammatory glaucomas. Curr Opin Ophthalmol. 2004;15:136-140.
4
Edelsten C, Reddy MA, Stanford MR, Graham EM. Visual loss associated with pediatric uveitis in English primary and referral centers. Am J Ophthalmol. 2003;135:676-680.
5
Paivonsalo-Hietanen T, Tuominen J, Saari KM. Uveitis in children: population-based study in Finland. Acta Ophthalmol Scand. 2000;78:84-88.
6
Da Mata AP, Foster CS. Ahmed valve and uveitic glaucoma. Int Ophthalmol Clin. 1999;39:155-167.
7
Papadopoulos M, Cable N, Rahi J, Khaw PT; BIG Eye Study Investigators. The British Infantile and Childhood Glaucoma (BIG) Eye Study. Invest Ophthalmol Vis Sci. 2007;48:4100-4106.
8
Paroli MP, Speranza S, Marino M, Pirraglia MP, Pivetti-Pezzi P. Prognosis of juvenile rheumatoid arthritis-associated uveitis. Eur J Ophthalmol. 2003;13:616-621.
9
Kanda T, Shibata M, Taguchi M, Ishikawa S, Harimoto K, Takeuchi M. Prevalence and aetiology of ocular hypertension in acute and chronic uveitis. Br J Ophthalmol. 2014;98:932-936.
10
Foster CS, Havrlikova K, Baltatzis S, Christen WG, Merayo- Lloves J. Secondary glaucoma in patients with juvenile rheumatoid arthritis-associated iridocyclitis. Acta Ophthalmol Scand. 2000;78:576-579.
11
Heinz C, Koch JM, Zurek-Imhoff B, Heiligenhaus A. Prevalence of uveitic secondary glaucoma and success of nonsurgical treatment in adults and children in a tertiary referral center. Ocul Immunol Inflamm. 2009;17:243-248.
12
Kalogeropoulos D, Sung VC. Pathogenesis of Uveitic Glaucoma. J Curr Glaucoma Pract. 2018;12:125-138.
13
Smith JR. Management of uveitis in pediatric patients: special considerations. Paediatr Drugs. 2002;4:183-189.
14
Giannini EH, Brewer EJ, Kuzmina N, Shaikov A, Maximov A, Vorontsov I, Fink CW, Newman AJ, Cassidy JT, Zemel LS. Methotrexate in resistant juvenile rheumatoid arthritis. Results of the U.S.A.- U.S.S.R. double-blind, placebo-controlled trial. The Pediatric Rheumatology Collaborative Study Group and the Cooperative Children’s Study Group. N Engl J Med. 1992;326:1043-1049.
15
Wallace CA. The use of methotrexate in childhood rheumatic diseases. Arthritis Rheum. 1998;41:381-391.
16
Tugal-Tutkun I, Havrlikova K, Power WJ, Foster CS. Changing patterns in uveitis of childhood. Ophthalmology. 1996;103:375-383.
17
Quartier P, Baptiste A, Despert V, Allain-Launay E, Koné-Paut I, Belot A, Kodjikian L, Monnet D, Weber M, Elie C, Bodaghi B; ADJUVITE Study Group. ADJUVITE: a double-blind, randomised, placebo-controlled trial of adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior uveitis. Ann Rheum Dis. 2017;77:1003-1011.
18
Simonini G, Druce K, Cimaz R, Macfarlane GJ, Jones GT. Current evidence of anti-tumor necrosis factor α treatment efficacy in childhood chronic uveitis: a systematic review and meta-analysis approach of individual drugs. Arthritis Care Res (Hoboken). 2014;66:1073-1084.
19
Ramanan AV, Dick AD, Jones AP, McKay A, Williamson PR, Compeyrot-Lacassagne S, Hardwick B, Hickey H, Hughes D, Woo P, Benton D, Edelsten C, Beresford MW; SYCAMORE Study Group. Adalimumab plus methotrexate for uveitis in juvenile idiopathic arthritis. N Engl J Med. 2017;376:1637-1646.
20
Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K. Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology (Oxford). 2011;50:1390-1394.
21
Chan NS, Choi J, Cheung CMG. Pediatric Uveitis. Asia Pac J Ophthalmol (Phila). 2018;7:192-199.
22
Samant M, Medsinge A, Nischal KK. Pediatric Glaucoma: Pharmacotherapeutic Options. Paediatr Drugs. 2016;18:209-219.
23
Passo MS, Palmer EA, Van Buskirk EM. Plasma timolol in glaucoma patients. Ophthalmology. 1984;91:1361-1363.
24
Schmidtborn F. Systemic side-effects of latanoprost in a child with aniridia and glaucoma. Ophthalmologe. 1998;95:633-634.
25
Babu K, Murthy GJ. Cytomegalovirus anterior uveitis in immunocompetent individuals following topical prostaglandin analogues. J Ophthalmic Inflamm Infect. 2013;3:55.
26
Chang L, Ong EL, Bunce C, Brookes J, Papadopoulos M, Khaw PT. A review of the medical treatment of pediatric glaucomas at Moorfields Eye Hospital. J Glaucoma. 2013;22:601-607.
27
Papadopoulos M, Edmunds B, Fenerty C, Khaw PT. Childhood glaucoma surgery in the 21st century. Eye (Lond). 2014;28:931-943.
28
Papadopoulos M, Edmunds B, Chiang M, Mandal A, Grajewski AL, Khaw PT. Glaucoma Surgery in Children. In: Weinreb RN, Grajewski A, Papadopoulos M, Grigg J, Freedman S, eds Childhood Glaucoma. WGA Consensus Series – 9. Amsterdam: Kugler Publications; 2013:95-134.
29
O’Malley Schotthoefer E, Yanovitch TL, Freedman SF. Aqueous drainage device surgery in refractory pediatric glaucomas: I. Long-term outcomes. J AAPOS. 2008;12:33-39.
30
Christakis PG, Tsai JC, Kalenak JW, Zurakowski D, Cantor LB, Kammer JA, Ahmed II. The Ahmed versus Baerveldt study: three-year treatment outcomes. Ophthalmology. 2013;120:2232-2240.
31
Kee C. Prevention of early postoperative hypotony by partial ligation of silicone tube in Ahmed glaucoma valve implantation. J Glaucoma. 2001;10:466-469.
32
Englert JA, Freedman SF, Cox TA. The Ahmed valve in refractory pediatric glaucoma. Am J Ophthalmol. 1999;127:34-42.
33
Mandalos A, Sung V. Glaucoma drainage device surgery in children and adults: a comparative study of outcomes and complications. Graefes Arch Clin Exp Ophthalmol. 2017;255:1003-1011.
34
Kalinina Ayuso V, Scheerlinck LM, de Boer JH. The effect of an Ahmed glaucoma valve implant on corneal endothelial cell density in children with glaucoma secondary to uveitis. Am J Ophthalmol. 2013;155:530-535.
35
Mandalos A, Tailor R, Parmar T, Sung V. The long-term outcomes of glaucoma drainage device in pediatric glaucoma. J Glaucoma. 2016;25:189-195.
36
Chiam PJ, Chen X, Haque MS, Sung VC. Outcome of fixed volume intracameral sodium hyaluronate 1.4% injection for early post‐operative hypotony after Baerveldt glaucoma implant. Clin Exp Ophthalmol. 2018;46:1035-1040.
37
Beauchamp GR, Parks MM. Filtering surgery in children: barriers to success. Ophthalmology. 1979;86:170-180.
38
Wang Q, Wang J, Fortin E, Hamel P. Trabeculotomy in the Treatment of Pediatric Uveitic Glaucoma. J Glaucoma. 2016;25:744-749.
39
Wiese K, Heiligenhaus A, Heinz C. Trabeculectomy in uveitis associated with juvenile idiopathic arthritis: long-term results in pediatric secondary glaucoma. Ophthalmologe. 2014;111:330-338.
40
Leinonen S, Kotaniemi K, Kivelä T, Majander A. Potential Effect of Tumor Necrosis Factor Inhibitors on Trabeculectomy With Mitomycin C for Patients With Juvenile Idiopathic Arthritis-Related Uveitic Glaucoma: A Retrospective Analysis. JAMA Ophthalmol. 2015;133:1323-1328.
41
Bohnsack BL, Freedman SF. Surgical outcomes in childhood uveitic glaucoma. Am J Ophthalmol. 2013;155:134-142.
42
Bayraktar S, Koseoglu T. Endoscopic goniotomy with anterior chamber maintainer: Surgical technique and one year results. Ophthalmic Surg Lasers. 2001;32:496-502.
43
Kulkarni SV, Damji KF, Fournier AV, Pan I, Hodge WG. Endoscopic goniotomy: early clinical experience in congenital glaucoma. J Glaucoma. 2010;19:264-269.
44
Papadopoulos M, Khaw PT. Goniotomy and Trabeculotomy. In: Shaarawy T, Sherwood MB, Hitchings RA, Crowston JG, eds. Glaucoma. Philadelphia: Saunders/Elsevier; 2009:493-499.
45
Teekhasaenee C, Ritch R. Combined phacoemulsification and goniosynechialysis for uncontrolled chronic angle-closure glaucoma after acute angle-closure glaucoma. Ophthalmology. 1999;106:669-674.
46
Pillunat LE, Erb C, Jünemann AG, Kimmich F. Micro-invasive glaucoma surgery (MIGS): a review of surgical procedures using stents. Clin Ophthalmol. 2017;11:1583-1600.
47
Caprioli J, Kim JH, Friedman DS, Kiang T, Moster MR, Parrish RK 2nd, Rorer EM, Samuelson T, Tarver ME, Singh K, Eydelman MB. Special commentary: supporting innovation for safe and effective minimally invasive glaucoma surgery: Summary of a Joint Meeting of the American Glaucoma Society and the Food and Drug Administration, Washington, DC, February 26, 2014. Ophthalmology. 2015;122:1795-1801.
48
Katz LJ, Erb C, Carceller A, Fea AM, Voskanyan L, Wells JM, Giamporcaro JE. Prospective, randomized study of one, two, or three trabecular bypass stents in open-angle glaucoma subjects on topical hypotensive medication. Clin Ophthalmol. 2015;9:2313-2320.
49
Plager DA, Neely DE. Intermediate-term results of endoscopic diode laser cyclophotocoagulation for pediatric glaucoma. J AAPOS. 1999;3:131-137.
50
Hooper PL, Rao NA, Smith RE. Cataract extraction in uveitis patients. Surv Ophthalmol. 1990;35:120-144.