Principles and novel clinical applications of optical coherence tomography
PDF
Cite
Share
Request
Case Report
P: 168-175
March 2008

Principles and novel clinical applications of optical coherence tomography

Turk J Ophthalmol 2008;38(2):168-175
1.
2.
No information available.
No information available
Received Date: 13.02.2008
Accepted Date: 28.03.2008
PDF
Cite
Share
Request

ABSTRACT

In the recent years, optical coherence tomography (OCT) has become one of the important diagnostic technologies in the ophthalmology, especially in retinal diseases and glaucoma. This technology provides high resolution cross-sectional images for detecting retinal pathologies even though the microscopic retinal abnormalities are easily noticeable. Additionally, the results are reproducible and exceedingly quantitative. Because of the properties of the OCT results, this technology is in use worldwide. However, as in any other imaging technique, some artifacts are expected to occur. Understanding of the basic physical principles in image acquisition and data processing of this technology is very important issue for clinical use of OCT. Clinicians have to be aware of some limitations of this new imaging device. Significant progress in the field of OCT retinal imaging has been made to improve the sensitivity and imaging speed. It is quite likely that the role of this technology as a method for diagnosis and management of retinal diseases and glaucoma will be further defined in the near future.

Keywords:
Optical coherence tomography, Glaucoma, Fourier domain

References

1
Fujimoto JG, Pitris C, Boppart SA, Brezinski ME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia, 2000;2:9-25.
2
Brezinski ME, Tearnry GJ, Bouma BE, Izatt JA, Hee MR, Swanson EA, Southern JF, Fujimoto JG. Optical coherence tomography for optical biopsy. Properties and demonstration of vascular pathology. Circulation, 1996;93: 1206-1213.
3
Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al.: Optical coherence tomography. S cience 1991;254:1178-1181.
4
Swanson EA, Izatt JA, Hee HA. In vivo retinal imaging by optical coherence tomography. Opt. Lett. 1993; 18:1864-1866.
5
Bartsch DU, Freeman WR. Axial intensity distribution analysis of the human retina with a confocal scanning laser tomograph. Exp. Eye Res. 1994; 58: 161-173.
6
Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325-332.
7
Huang Y, Cideciyan AV, Papastergiou GI, Banin E, Semple-Rowland SL, Milam AH, Jacobson SG. Relation of optical coherence tomography to microanatomy in normal and rd chickens. Invest Ophthalmol Vis Sci 1998;39:2405-2416.
8
Hoyt WF, Newman NM. The earliest observable defect in glaucoma? Lancet 1972;1:692-693.
9
Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci 2000;41:741-748.
10
Utine CA, Eren H, Perente İ, Bayraktar fi, Yılmaz ÖF. Primer açık açılı glokom olgularında görme alanı defekt skorlamasına göre optik koherens tomografi ölçümlerinin degerlendirilmesi. Glokom-Katarakt 2006; 1: 165-170.
11
Schuman JS, Pedut-Kloizman T, Hertzmark E, Hee MR, Wilkins JR, Coker JG, Puliafito CA, Fujimoto JG, Swanson EA. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103:1889-1898.
12
Blumenthal EZ, Williams JM, Weinreb RN, Girkin CA, Berry CC, Zangwill LM. Reproducibility of nerve fiber layer thickness measurements by use of optical coherence tomography. Ophthalmology 2000;107:2278-2282.
13
Carpineto P, Ciancaglini M, Zuppardi E, Falconio G, Doronzo E, Mastropasqua L. Reliability of nerve fiber layer thickness measurements using optical coherence tomography in normal and glaucomatous eyes. Ophthalmology 2003;110:190-195.
14
Paunescu LA, Schuman JS, Price LL, Stark PC, Beaton S, Ishikawa H, Wollstein G, Fujimoto JG. Reproducibility of nerve fiber thickness, macular thickness, and optic nerve head measurements using stratusoct. Invest Ophthalmol Vis Sci 2004;45:1716-1724.
15
Budenz DL, Chang RT, H uang X, Knighton RW, Tiels ch JM. Reproducibility of retinal nerve fiber thickness measurements using the stratus oct in normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 2005;46:2440-2443.
16
Bayraktar fi, Türker G. Erken glokom ve glokom şüphesi olgularında optik koherens tomografi ile elde edilen retina sinir lifi kalınlıgı ölçümlerinin tekrarlanabilirligi. T. Oft. Gaz. 2000; 30: 404-408.
17
Leung CK, Yung WH, Ng AC, Woo J, Tsang MK, Ts e KK. Evaluation of scanning resolution on retinal nerve fiber layer measurement using optical coherence tomography in normal and glaucomatous eyes. J Glaucoma 2004;13:479-485.
18
Schuman JS, Hee MR, Puliafito CA, Wong C, Pedut-Kloizman T, Lin CP, Hertzmark E, Izatt JA, Swanson EA, Fujimoto JG. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113:586-596.
19
Sanchez-Galeana CA, Bowd C, Zangwill LM, Sample PA, Weinr eb RN. Short-wavelength automated perimetry results are correlated with optical coherence tomography retinal nerve fiber layer thickness measurements in glaucomatous eyes. Ophthalmology 2004;111:1866-1872.
20
Bowd C, Weinreb RN, Williams JM, Zangwill LM. The retinal nerve fiber layer thickness in ocular hypertensive, normal, and glaucomatous eyes with optical coherence tomography. Arch Ophthalmol 2000;118:22-26.
21
Bowd C, Zangwill LM, Berry CC, Blumenthal EZ, Vasile C, Sanchez-Galeana C, Bosworth CF, Sample PA, WeinrebRN. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Invest Ophthalmol Vis Sci 2001;42:1993-2003.
22
Medeiros FA, Zangwill LM, Bowd C, Weinreb RN. Comparison of the GDx VCC scanning laser polarimeter, HRT I I confocal scanning laser ophthalmoscope, and stratus oct optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 2004;122:827-837.
23
Mrugacz M, Bakunowicz-Lazarczyk A. Optical coherence tomography measurement of the retinal nerve fiber layer in normal and juvenile glaucomatous eyes. Ophthalmologica 2005;219:80-85.
24
Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol 2005;139:509-517.
25
Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Ts e RK. Comparison of macular and peripapillary measurements for the detection of glaucoma: An optical coherence tomography study. Ophthalmology 2005;112:391-400.
26
Wollstein G, Schuman JS, Price LL, Aydin A, Beaton SA, Stark PC, Fujimoto JG, Ishikawa H. Optical coherence tomography (OCT) macular and peripapillary retinal nerve fiber layer measurements and automated visual fields. Am J Ophthalmol 2004;138:218-225.
27
Varma R, Skaf M, Barron E. Retinal nerve fiber layer thickness in normal human eyes. Ophthalmology 1996;103:2114-2119.
28
Savini G, Zanini M, Carelli V, Sadun AA, Ross-Cisneros FN, Barboni P. Correlation between retinal nerve fibre layer thickness and optic nerve head size: An optical coherence tomography study. Br J Ophthalmol 2005;89:489-492.
29
Jonas AL, Sheen NJ, North RV, Morgan JE. The Humphrey optical coherence tomography scanner: quantitative analysis and reproducibilty study of the normal human retinal nevre fibre layer. Br.J. Ophthalmol. 2001; 85: 673-677.
30
Skaf M, Bernandes AB, Cardillo JA, Costa RA, Melo LA, Castro JC, Varma R. Retinal nerve fiber layer thickness profile in normal eyes using third-generation optical coherence tomography. Eye. 2006; 20: 431- 439.
31
Wollstein G, Paunescu LA, Ko TH, Fujimoto JG, Kowalevicz A, Hartl I, Beaton S, Ishikawa H, Mattox C, Singh O, Duker J, Drexler W, Schuman JS. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology 2005;112:229-237.
32
Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734-1746.
33
Wollstein G, Ishikawa H, Wang J, Beaton SA, Schuman JS. Comparison of three optical coherence tomography scanning areas for detection of glaucomatous damage. Am J Ophthalmol. 2005;139: 39-43.
34
Drexler W, Morgner U, Kartner FX, Pitris C, Boppart SA, Li XD, Ippen EP, Fujimoto JG. In vivo ultrahigh-resolution optical coherence tomography. Opt.Lett. 1999;24: 1221-1223.
35
Drexler W, M orgner U, Ghanta RK, Kartner FX, Schuman JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. N at Med 2001;7:502-507.
36
Drexler W, S attmann H, Hermann B, Ko TH, Stur M, Unterhuber A, Scholda C, Findl O, Wirtitsch M, Fujimoto JG, Fercher AF. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121:695-706.
37
Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003;21:1361-367.
38
38. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, F ercher AF. In vivo human retinal imaging by fourier domain optical coherence tomography. J Biomed Opt 2002;7:457-463.
39
Wojtkowski M, Bajraszewski T, Tar gowski P, Kowalczyk A. Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt Lett 2003;28:1745-1747.
40
Ishikawa H, Gabriele ML, Wollstein G, Ferguson RD, Hammer DX, Paunescu LA, Beaton SA, Schuman JS. Retinal nerve fiber layer assessment using optical coherence tomography with active optic nevre head tracking. Invest Ophthalmol Vis.Sci. 2006; 47: 964-967.